gcVM: Publicly Auditable MPC via Garbled Circuits
with Applications to Private EVM-Compatible Computation

Avishay Yanai, Meital Levy, Hila Dahari-Garbian, Mike Rosulek

Soda Labs
Abstract—Blockchains have achieved substantial the correct result of past transactions. On the other
progress in scalability and fault tolerance, vyet hand, the lack of confidentiality presents a barrier to the
confidentiality remains an important challenge. deployment of many useful applications of blockchain

Existing zero-knowledge (ZK) solutions provide partial
privacy guarantees but have poor performance and
composability, especially for computations involving
the private state of many participants. In this work,
we introduce gcVM, a novel extension to the Ethereum
Virtual Machine (EVM) that integrates garbled-circuit-
based computation to
general-purpose, privacy-preserving computation on-
chain. gcVM allows transactional interactions between
untrusted parties, balancing the transparency of
public blockchains with strong confidentiality. Our
implementation demonstrates up to 83 confidential
transactions per second (cTPS) on
instances, with projected enhancements expected to

secure multi-party enable

standard cloud

scale throughput to approximately 500 cTPS—two to
three orders of magnitude faster than comparable
FHE-based solutions. gcVM is compatible with existing
EVM tooling, provides public auditability, and requires
no trusted hardware, offering a practical and efficient
platform for privacy-centric blockchain applications
across finance, governance, and decentralized services.

1 Introduction

Blockchains, the Ethereum Virtual Machine, and
the problem of confidentiality. Blockchains were
originally designed to prioritize availability and trans-
parency, with significant progress made in scalability
through innovations like rollups and advancements in
Byzantine Fault Tolerance (BFT) protocols.

Our focus on this work is the Ethereum Virtual Ma-
chine (EVM). Unlike Bitcoin, the EVM provides a Turing
complete, stateful execution environment that enables
complex programmable interactions between users and
smart contracts. This expressiveness makes the EVM
the natural setting for exploring advanced cryptographic
techniques that go beyond payment anonymity, such as
privacy-preserving computation, anonymous credentials,
and secure state updates.

An important fact about EVM for our purposes is
that the entire state of all smart contracts (including
financial and social information) is public. On the one
hand, this fact played a key role in contributing to the
decentralization of Ethereum (who is the first to deploy
an EVM), as it allows anyone to contribute computa-
tional resources and to verify that the EVM state is

technology. For example, elections, sealed-bid auctions,
lending/borrowing, deposit management, and OTC mar-
kets all involve information that must crucially remain
confidential.

1.1. Existing Approaches & Limitations

Several cryptographic technologies have been pro-
posed to address the challenge of confidentiality for
blockchains.

Zero-knowledge proofs (ZK). ZK-based systems
achieve privacy by committing to data on-chain and
proving correctness without revealing the underlying
inputs. This technique is highly efficient and provides
public verifiability and succinctness, but its main draw-
backs are that:

o The prover must know all inputs in plaintext, so the
technique is limited to computations that involve
private inputs from just one party. This makes it
difficult for different smart contracts to interact.

« They typically rely on a trusted setup.

For example: ZCash [BCG*14] and Monero [Mon23] use
zk-SNARKSs and ring signatures, respectively, to provide
transactional anonymity but lack general smart-contract
capability. Zexe [BCG*20] and VeriZexe [XCZ*23] ex-
tend this paradigm to decentralized private compu-
tation (DPC), supporting off-chain computation with
succinct on-chain proofs. Hawk [KMS*16] introduces
privacy-preserving contracts via a trusted manager,
later replaced by MPC in zkHawk [BCT21] and V-
zkHawk [BT22].

Fully homomorphic encryption (FHE). FHE-
based [Gen09] solutions allow parties to carry out
arbitrary computations on encrypted data. Exam-
ples in the blockchain space include fheVM [Zaml],
Zether [BAZB20], Zkay [SBG*19], SmartFHE [SWA23],
and PESCA [Dai22]. FHE offers strong theoretical guar-
antees, but suffers from several limitations:

o Even with significant engineering improvements,
FHE is slow. For example, fheVM supports roughly
2-3 confidential transactions per second on AWS’s

most powerful instances. '

o FHE-based solutions generally do not provide cryp-
tographic agility, which is defined as the ability to
easily replace cryptographic components if some
are found to have weaknesses. FHE solutions and
their correpsonding optimizations are intrinsically
tied to a highly specific choice of cryptographic
algorithm, at a specific security level. For example,
fhEVM is based on the TFHE construction.

Trusted execution environments (TEE). TEE-based
systems perform computation within secure enclaves
that hold decryption keys, storing only encrypted
data on-chain. Examples include Oasis [Fou23] and
Phala [Net23]. Unlike cryptographic solutions, TEEs have
almost no computational overhead. However,

 Trust in hardware is riskier than trust in cryptogra-
phy. All known TEEs are vulnerable to side-channel
attacks (SCAs).

« If secrets are stored in a single TEE, there is a single
point of failure for availability. If secrets are stored
in several TEEs, there are many points of failure for
privacy.

Secure multiparty computation (MPC). MPC-based
systems enable multiple parties to jointly compute con-
tract logic over private data, via an interactive protocol.
Solutions like zkHawk [BCT21] and V-zkHawk [BT22]
eliminate the trusted manager in Hawk by using MPC
protocols. Eagle [ByCDF23] further adds identifiable
abort and public verifiability These approaches provide
strong privacy even under dishonest-majority settings
and are well-suited for decentralized input ownership.
However, all previous approaches use secret-sharing-
based MPC techniques, which have certain limitations.
o They require many sequential rounds of computa-
tion (proportional to the circuit-depth of the com-
putation). This results in high latency for deep com-
putations, as well as challenges inherent in having
many protocol synchronization points.
« Existing MPC-based solutions have their network
structure “baked in, meaning that clients must
know the identities of the computing nodes.

1.2. Our Contributions

In this work, we introduce gcVM, a novel exten-
sion to the Ethereum Virtual Machine (EVM) that adds
the ability to store private data on-chain and enable
privacy-preserving smart contracts. gcVM is the first
such system based on garbled circuits [BHR12], a classic
technique from secure multi-party computation.

The current stable version of the gcVM has been
deployed on a public Testnet and is scheduled for Main-
net deployment following a security audit and an ex-
pansion of the MPC node network. Even without some
of the optimizations introduced in this work, the sys-
tem demonstrates notable performance, achieving up

1. Based on numbers provided in https://docs.zama.org/tfhe-rs/
get-started/benchmarks/cpu/cpu-integer-operations, assuming a mod-
est transaction involving the following atomic operations: Comparison,
for comparing the payer’s balance with the payout amount; addition,
to increase the payee’s balance; subtraction, to decrease the payer’s
balance; and a ZKPoK verification to authenticate the payer.

to 83 confidential transactions per second (cTPS) on
basic Amazon EC2 instances under moderate bandwidth
conditions using single-threaded MPC nodes. This result
indicates substantial room for further performance gains.
Notably, one major enhancement described in this work,
referred to as “offline soldering,” is expected to scale
the gcVM to approximately 500 cTPS, with additional
improvements such as parallel evaluation projected to
increase throughput even further. For context, a compa-
rable commercial system based on Fully Homomorphic
Encryption (FHE) achieves only 2-3 ¢TPS on Amazon’s
most powerful machines, implying that gcVM can offer
two to three orders of magnitude higher performance in
similar environments.

Our approach enjoys the following features:

Modularity. Our garbled-circuit-based solution con-
sists of two distinct and independent phases. The Gar-
bling phase involves significant computation by the net-
work nodes (the ‘garblers’) and is conducted offline in a
pre-processing stage, producing a garbled circuit—a se-
cure one-time container for data processing. This phase
continually generates garbled circuits for subsequent use
during the Evaluation phase, where actual transactions
are processed. The Evaluation phase is executed by the
network nodes in an efficient manner. The Garbling
phase can be instantiated in a variety of ways, leading
to a modular ’privacy supply chain’ that the Evaluation
phase can consume.

Security and Cryptographic Agility. One design
principle behind gcVM is to align with industry crypto-
graphic standards right from the start, rather than intro-
ducing a proprietary, yet-to-be-standardized encryption
and zero-knowledge schemes. In gcVM, private transac-
tion data can be encrypted by any standard, symmetric-
key encryption scheme (e.g., AES-GCM). Thus, we in-
herit the high assurance that these heavily scrutinized
algorithms have enjoyed. Our approach is relatively ag-
nostic to the specific choice of encryption. Instantiations
are available in many key lengths and block lengths,
positioning them as post-quantum ready.

Apart from conventional, off-the-shelf encryption
schemes, the gcVM requires only an abstract garbling
scheme [BHR12], which in turn can be instantiated
from any standard block cipher (e.g., AES-128). An ad-
vantage of encrypting transaction data using standard
symmetric-key encryption is that it is relatively practical
to incorporate encryption/decryption logic within a gar-
bled circuit (because standard symmetric-key algorithms
have relatively small boolean circuits).

Arbitrary transaction logic. By using general-
purpose MPC techniques, applied to data encrypted with
conventional symmetric-key techniques, our approach
can handle computations over private data of any users.
Unlike ZK-based approaches, there is no requirement
that a prover knows all of the private data for a single
transaction. This feature is vital for a range of blockchain
applications, from dynamic identity systems and DeFi
applications like AMM to portfolio management, social
trading, auctions, governance, and more.

Public auditability. A special requirement that
may be crucial in many settings is ensuring that com-
putations—even on ciphertexts—are publicly auditable,
thereby mitigating the risk of manipulation or theft

https://docs.zama.org/tfhe-rs/get-started/benchmarks/cpu/cpu-integer-operations
https://docs.zama.org/tfhe-rs/get-started/benchmarks/cpu/cpu-integer-operations

through ‘silent collusion’ among all parties. In practical
terms, any state-transition is deemed invalid if it fails
public audit. Garbled circuits pose a natural candidate
to satisfy that requirement, as the garbled circuits them-
selves are public, and it only remains for the auditor to
ensure that garbled inputs are obtained correctly.

Performance. We achieve high performance by sep-
arating the steps involved in garbled-circuit-based MPC
into two phases. Garblers continuously produce a sup-
ply of garbled circuits for a selection of atomic op-
erations (e.g., ADD64, MULT64, LEQ). This is the offline
garbling phase. Then, when a transaction arrives, eval-
uators quickly assemble these already-garbled circuits
together into one unified circuit representing the entire
transaction. In this way, we maximize the amount of
effort that can be done before the transaction is known.

Only the garbled evaluation needs to happen at the
time of a transaction. Both the evaluation step and
the “stitching” (soldering) steps require a small constant
number of communication rounds among nodes, which
does not depend on the number of parties involved or
the complexity of the transaction.

User and developer experience. Users interact
with the gcVM system in an extremely simple way.
Private data is provided by simply encrypting it under
a standard symmetric-key scheme (e.g., AES-GCM) and
sending the resulting ciphertext to the network. Trans-
actions then simply refer to [the contents of] these
ciphertexts. All other cryptography (i.e., the garbled cir-
cuits and other primitives) is handled exclusively by the
network nodes.

As a result, a gcVM client can be implemented using
only cryptography that is included in openssl. This
makes seamless deployment possible on a wider range of
devices and platforms. As a point of comparison, clients
in fhEVM must compute and send a zero-knowledge
proof of knowledge.

Additionally, gcVM is built on EVM, the most popular
environment for smart contracts. We can therefore take
advantage of all the existing tooling and workflows
for EVM contracts. The vast majority of FHE-based
solutions, for example, rely on alternative, proprietary
execution environments [Par21], [Sec], [Oas].

1.3. Other Related Work

Public verifiability / covert security in MPC. The
notion of public verifiability and covert security in se-
cure multi-party computation (MPC) has been stud-
ied extensively in recent years. Damgard, Orlandi, and
Simkin [DOS20] introduced a general transformation
from arbitrary passively secure preprocessing protocols
into protocols that achieve covert security with pub-
lic verifiability, while maintaining the same corruption
threshold. Their construction employs time-lock puzzles
to enable delayed opening of protocol commitments,
thereby allowing external verification of protocol cor-
rectness. Although their primary focus is on the two-
party setting, they also outline how their approach can
be extended to multi-party computation. Following this
line of work, Fischlin et al. [FHKS21] presented a generic
compiler that converts covertly secure MPC protocols

into publicly verifiable ones. Their compiler leverages
time-lock encryption to ensure that the probability of
detecting cheating (often referred to as the deterrence
factor) remains high and independent of the number of
participating parties.

A related strand of research studies publicly
verifiable two-party computation (2PC). Works such
as [KM15], [HKK*19], [ZDH19], [DOS20] propose pub-
licly checkable cut-and-choose techniques for 2PC based
on garbled circuits, enabling third parties to verify cor-
rectness without compromising privacy.

Beyond covert and two-party settings, several works
have explored auditable and publicly verifiable MPC.
Public verifiability, as introduced in [BDO14], [SV15],
allows any external observer to verify the correctness
of outputs based solely on publicly available data, such
as values posted to a public bulletin board. Baum et
al. [BDO14] and Schoenmakers and Veeningen [SV15]
developed frameworks for publicly auditable MPC, high-
lighting the importance of external accountability in
distributed computation. More recently, Baum, Orlandi,
Scholl, and Simkin [BOSS20] presented the first con-
cretely efficient, constant-round MPC protocols achiev-
ing identifiable abort and public verifiability in the
dishonest-majority setting. Their protocols assume static
corruptions and rely on broadcast and bulletin board
functionalities. In both the identifiable abort and publicly
verifiable variants, their constructions achieve constant-
round communication, counting broadcast or bulletin-
board access as a single round.

Related work on garbling. The garbled circuits
technique was first proposed by Yao [Yao86] and later
formalized by Lindell and Pinkas [LP09] and Bellare,
Hoang and Rogaway [BHR12]. We use a technique called
soldering, whereby components are garbled before the
final circuit (transaction) is known, and then later as-
sembled into a unified garbled circuit. The technique was
pioneered by Nielsen and Orlandi [NO09] and refined in
a series of works [FJN*13], [FJNT15], [KNR*17], [ZH17].

Paper structure. We provide an overview of the net-
work architecture, the threat model, and the technical
concepts behind the garbled circuit-based MPC frame-
work in Section 2; we provide a formal treatment of
the MPC framework and a security analysis in Sections
3-4 and 5, respectively; and finally report about the
current integration with the go-ethereum client and the
performance of the network in Section 6.

2 Technical Overview and Threat
Model

2.1. Architecture Overview

The network is depicted in Figure 1. Transactions
originate from clients (aka EOAs) and pass through the
sequencing sub-network, which produces a non-canonical
block (appears in red). A non-canonical block is simply a
container of transactions intended to be used internally
only and does not change the blockchain’s state. Trans-
actions in that block only pass through basic validation
like signature verification, gas consumption limit, etc.

The non-canonical block is then passed to the execu-
tion sub-network, which iterates over the transactions
in the non-canonical block, executes them one-by-one,
and produces a canonical block. The canonical block
is then published and declared as the new blockchain
‘head’, and contains claims about the changes in the
blockchain’s state. The execution sub-network is com-
posed of the usual EVM execution engine as well as
an integration with garbled circuits evaluator nodes
to handle privacy preserving computation workloads.
These evaluator nodes continuously receive garbled cir-
cuit materials from the garblers. Separating sequencing
from execution is inherent to privacy-preserving chains,
which stems from a ‘chicken-and-the-egg’ problem, as
explained in Appendix A.

client

e o - ~
| Seauencing ! Full Node
| 1
1 1
transactions ! QOO ! \l/
' ’

Non-Cawonical Block

Execution

Execution
Node Node

MPC MPC
Evaluator Evaluator,

Offline (Punction-independent) garbling

E}arblex] [Garblexj [Garblex}

Figure 1. High-level architecture of the gcVM Network.

The gcVM extends the instruction set of the EVM
with an analogous set of instructions for secure compu-
tation. These instructions receive encryptions as input
and produce an encryption as an output, namely, an
instruction for securely computing the function y =
f(x1,%2,...,x,) receives n ciphertexts cty,...,ct, and
outputs a ciphertext ct,, s.t. decryption of cty is equal
f(pty,...,pt,) where pt; is the decryption of ct;. To
achieve that without having to trust any single party,
the execution sub-network runs an MPC protocol that
ensures that plaintexts are not revealed (unless this was
the intention of the client).

The evaluation nodes collectively manage one global
symmetric encryption ‘network key’ and one symmetric
encryption ‘user key’ per user (EOA), such that all keys
are secret shared among themselves. The user key is
distributively generated on demand by the evaluation
nodes, upon a user-onboard transaction. The network
key is used to encrypt the blockchain’s private shared
state whereas the user key is used to bring in new
arguments to the gcVM and to return results to specific
users, according to the smart contract logic.

Users can bring in new ciphertexts as well as invoke
confidential computing on existing ones by sending a

Blockchain head

transaction to the gcVM. The lifetime of a transaction
involves handling different forms of encrypted values, as
depicted in Figure 2 and explained below.

A client can send a transaction that potentially
contains encrypted arguments. Such argument is en-
crypted using the client’s symmetric encryption key,
and is individually signed. The signature is applied to
the encryption as well as other metadata, consisting of
the destination contract and method. This facilitates a
protection against ciphertext theft attacks by ensuring
that only the destination contract and method may
process that ciphertext. Collectively, the ciphertext and
the signature are referred to as ‘input-text’.

At execution time, each input-text’s authenticity is
first validated, meaning that the gcVM verifies that the
input-text is signed by the same transaction sender’s
signing key, and the current contract and method match
those it signed on. The transaction reverts if that vali-
dation fails.

After validation, the ciphertext is passed through a
decryption garbled circuit, which results in a garbled-
text. That circuit is given as inputs the ciphertext and
the appropriate user symmetric key, and performs the
decryption operation. To that end, both the ciphertext
and the user symmetric key are transformed, by the
evaluator MPC nodes, into labels that suit the decryp-
tion garbled circuit. This is done in a sub-protocol that
resembles an oblivious transfer (OT), except that here
the evaluators simulate both the sender and the receiver.
At the end of that sub-protocol, the evaluators have a
single label for each input wire of the decryption garbled
circuit, and are ready to locally evaluate.

Note that the plaintext encrypted under the input-
text and the garbled-text is the same, except that
garbled-text encryption format makes the encrypted
data amenable for secure computation by subsequent
garbled circuits. The garble-text represents a plaintext
by a set of wire labels, in a way that the labels do not
disclose anything about that plaintext.

The required computation, which is specified by the
contract’s logic, is conducted inside an environment
called ‘Garbled Execution Environment’ (GEE), which en-
sures that private data cannot leak from one transaction
execution sandbox to another. The GEE can ensure such
isolation thanks to the unpredictability of garbled-texts;
that is, the fact that as long as the labels for the input
wires of a garbled circuit are not disclosed, the labels for
its output wires are unknown too. Therefore, one cannot
‘inject’ a valid garbled-text to the execution of the GEE.

When execution is completed, depending on the con-
tract logic, it can either decrypt a garbled-text, encrypt
it to a certain user (EOA) or to the network. While
decrypting a garbled-text only requires revealing the true
meaning of the labels obtained for the output wires,
encrypting it to a user or the network requires passing
that garbled-text through an encryption garbled circuit
(with the user’s or the network’s key, respectively). If
encrypted to the network, that data joins the private
shared state and can be reused in future transactions,
in case that contract is being called again.

revert

F'CEVM Execution [rir\\fa[‘vof

Client Signed UnputTexts + PlanTexts)

AE Valid 7
LputText —3>| Validate > Decrypt —3> GarbledText

| Garbled Execution Env
INPUT

AES key transaction

Receipt

GarbledText

OUTPUT
CipherText —se——— Encryp’t = GarbledText

Contract state

[

J

Figure 2. Transaction flow in the gcVM.

2.2. The gcVM’s threat model

In the heart of our MPC protocol lies a garbling
scheme. With great simplicity, this is a cryptographic
scheme that is given a boolean circuit f2, and outputs
a tuple F,e,d where F is the ‘garbled’ version of f, the
encoding e maps input wire w; to two possible labels
Lio and L;; representing the bits 0 and 1; similarly, the
decoding d maps the labels L; and Lj; to the bits 0 and
1, for every output wire w;. In an analogy to f, which
carries one out of two bits over each of its wires, F carries
one out of two possible labels over each wire. Correctness
of a garbling scheme requires F to ‘mimic’ f; that is, if f
has n and m input and output wires (resp.), evaluating F
on labels Ly p,, ..., Lyp, (one label per input wire) results
in labels Lipiseo s L, (one label per output wire) s.t.
f(by,...,by) = (b},...,b),). Privacy of a garbling scheme
requires that the labels used in the evaluation of F do
not leak the bits they represent.

A typical garbled circuit-based secure computation
protocol consists of one garbler and one evaluator. Given
a circuit f, the garbler produces a suitable (F,e,d) as
above, and hands the evaluator F and d, as well as one
label per input wire, that is, the label that represents the
actual input bit.?

In our setting, we abstract out the two roles and end
up with a set of garblers G and a set of evaluators E,
where 1 < |G| and 2 < |E|. Similarly, we define two
threshold parameters 0 < tg < |G| and 0 < tg < |G| that
specify the maximal number of garblers and evaluators
that the adversary is assumed to corrupt. With that

abstraction we can achieve the following guarantees:
e Privacy holds as long as the adversary corrupts less

than tg evaluators and less than tg garblers.
o Public auditability guarantees that correctness al-
ways holds, even when all parties collude.

The latter property is crucial for a blockchain-based
solution, as the computation is typically delegated to a
set of nodes as a service. Public auditability enables 3rd
parties to make sure that, even in extreme cases where

2. We focus on boolean circuits here but the same holds for arith-
metic circuits.

3. When this bit is a private input to the evaluator, an oblivious
transfer (OT) protocol enables the evaluator to obtain the appropriate
label without disclosing to the garbler the actual input bit.

privacy breaks, that service could not steal funds from
its users.

The new threat model provides more flexibility in
deployments. The idea is that the garblers can, in prin-
ciple, use a one-directional communication channel to
the internet, thereby significantly reducing their attack
surface. This is because the garblers only need to send
out the garbled circuits they produce, without receiving
any input from the evaluators (recall that the evaluators
simulate the OT protocol among themselves).

2.3. Key concepts of the MPC protocol

The above allows for various possible instantiations
of a GC-based MPC protocol, depending on the number
of garblers, evaluators, and the threshold parameters. In
the following we list the key concepts that are common
to most settings.

Transaction-independent garbling via online and
offline soldering. In contrast to the two-party protocol
described above, in our setting where 2 < |E|, the
garblers’ work is completely independent of the online
computation — the tuple (F, e, d) is produced and handed
over to the evaluators such that F is handed in the clear
whereas e and d are secret shared among them. This
way the evaluators do not need to interact with the
garbler(s) anymore and can simulate the OT protocol
among themselves (in order to obtain the correct label
for each input wire of F). That is, the two labels L;¢ and
L;1 for every input (and output) wire w; are secretly
shared between evaluators. When it is time to evaluate
that circuit, the evaluators conduct a lightweight 2-
rounds protocol in which they obtain L;p,, where b; is
the real input bit to enter w;. The evaluators can do that
even when b; is held in a secret shared form.

To enable meaningful computation by the evalua-
tors, the garbler(s) continuously produce garbled cir-
cuits for each of the EVM’s instructions (ADD64, MUL64,
EQ64, etc.) and hand them over to the evaluators, as de-
scribed above. Upon receiving a transaction, described as
a sequence of EVM instructions, the evaluators consume
the precomputed garbled circuits. However, in order to
pass value from the output wire w; of one circuit to the
input wire w; of the subsequent circuit, the evaluators

conduct an online soldering protocol. That is, this enables
the evaluators to translate label L;;, obtained on output
wire w; to label Ljp, on input wire w;, such that b; = b;.
Note that L;p, and L;p, encode the same value b and
so the computation continues as if both garbled circuits
were connected in the first place.

The online soldering incurs communication rounds
between the execution of different circuits. An optimized
version, we call offline soldering, performs all needed
soldering in one shot, thereby, spending a fixed number
of communication rounds to solder many circuits at the
same time instead of per circuit, which accounts to a
huge performance improvement as the whole transac-
tion (or even the whole block) can be securely computed
following a fixed number of communication rounds. See
Appendix B for an illustration.

Encryption scheme and key-management. The sys-
tem relies on symmetric key encryption for secrecy (and
on digital signatures for authenticity). That means that
the network maintains a secret key ky as well as a
secret key ky per user U, where each key is secret
shared among the evaluators. To input an encrypted
argument ct = Enc(ky,m), the user U associates a
signature o on ct and some metadata that specifies the
exact contract and method to which this argument is
intended (to prevent a ‘ciphertext theft’). Then, when
executed, the signature is verified against the sender’s
public key as well as the contract and method being
executed, and then ct and ky are entered as inputs to
a garbled circuit for ‘secure decryption’; meaning that
the result of the decryption m = Dec(ky, ct) remains in
labels format, also called ‘garbled-text’. This garbled-text
is readily available to be soldered to other garbled circuit
for further computation.

Public auditability. For public auditability, the protocol
has to ensure the following:

1) The garbled circuits produced by the garbler(s) are
correct, namely, they compute the intended func-
tion and nothing else.

2) Given correct garbled circuits, the evaluators eval-
uate them correctly. That is, they reveal and use
the correct labels for all input wires of the gabrbled
circuits they evaluate.

We now explain how the above items are addressed:

1) The first requirement can be satisfied cryptograph-
ically by a cut-and-choose-based protocol [KM15],
[HKK*19], [ZDH19], [DOS20], where some of the
produced garbled circuits are completely revealed
for verification, and the rest are used for actual
computation. In our setting the cut-and-choose
overhead can be significantly reduced, taking into
account that (i) this is a repeating rather than a one-
time game, a setting not yet addressed in previous
works [KM15], [HKK*19], [ZDH19], [DOS20] and
left for future work; (ii) in our context, an incor-
rect garbled circuit can be reported and verified
on-chain (in a technique similar to Arbitrum’s bi-
section-based fraud-proof algorithm [Arb23]). This
means that an arbitrator smart contract will need
to verify the correctness of a single garbled gate,
incurring a constant on-chain cost. If the arbitrator

smart contract indeed finds an incorrect garbled
gate then the garbler(s) will be slashed. Alterna-
tively, the garbling itself can be computed using
a publicly auditable protocol, for which there are
various approaches [BDO14], [SV15]. In the case
of |G| = 1, this can be done with a simple zero-
knowledge proof that the produced circuit was
computed correctly [ASH*20]. To satisfy a greater
throughput demands, multiple garbling committees
can be formed such that each committee works
independently.

As a second non-cryptographic alternative, gar-
bler(s) can run inside a TEE, and so even a leak of
the hardware secret keys will not cause an incorrect
garbled circuits.

In reality, both methods can be combined in order
to achieve two layers of security.

Let us address the second requirement. A useful
property of garbled circuits is that, given the input
wires’ labels used to evaluate a garbled circuit,
anyone will obtain the exact same labels on the
output wires. These labels do not reveal anything to
a 3rd party auditor (from the privacy guaranteed by
the garbling scheme), meaning that if the labels on
the input wires are correct, anyone can verify the
resulting labels on the output wires, as reported by
the evaluators.

It remains to make sure that the translation from
inputs to labels, as well as the soldering (which
translates from labels to labels) is publicly verifiable.
This is done via a novel technique that utilizes
homomorphic commitments applied by the garbler
to the permutation bits of the input and output
wires’ labels of every garbled circuit.

Publicly auditable soldering is achieved by extend-
ing the garbling scheme to contain more informa-
tion about the labels. The following explanation
builds on the Half-Gates garbling scheme [ZRE15],
but can be extended to any garbling scheme, as
discussed later.

In the Half-Gates garbling scheme each in-
put/output wire w; is associated with two labels
L? and L! with signal bit (their Isb) being 0 and
1 respectively. The signal bit does not leak infor-
mation about the real bit that the label represents;
rather, the real bit is dictated by a random per-
mutation bit p; that is also associated with the
wire: if p; = 0 then L) and L} represent 0 and
1 (respectively), otherwise (if p; = 1) then they
represent 1 and 0 (respectively). In our protocol, all
labels and permutation bits are secret shared by the
evaluators and only one label per wire is revealed
right before evaluation. In addition, we extend the
garbling scheme so the evaluators also obtain (from
the garbler(s)) a commitment to the permutation
bit p;, denoted ¢; = Com(p;;r;) as well as a secret
sharing to the decommitment r;, where Com is an
additively homomorphic commitment. The evalua-
tors also obtain a single global commitment to the
value 1, namely ¢* = Com(1;r*).

Now, suppose that the evaluators want to connect
the output wire w; of one circuit, to the input wire
w; of another circuit. The evaluators first reveal

pij = pi ® pj; this tells them whether the permu-
tation bits are the same (i.e., p;; = 0) or not (i.e.,
pij = 1). The evaluators do as follows:

« Case p;; = 0. The evaluators need to reveal the
map {L{ — Lj, Lj — L} and so they reveal the
soldering information &;; = L? @ L? and 6;1 =
LieL;

o Case p;; = 1. The evaluators need to reveal the
map {L — L}, L — L?} and so they reveal the
soldering information &;jo = L? (&) LJI. and d;j1 =
Lie LY.

When it is time to evaluate a complex set of garbled

circuits, in which output wire w; is connected to

input wire wj, the evaluators first obtain the active
label on w;, say Lf (for some b € {0,1}) and
translate it to the appropriate active label on w; by

locally computing L;’/ = Lf’ ® bijp. Note that b' = b

if p;j =0and b’ =1-0b if p;; = 1. Note that given

a label Lf.’, the signal bit b is known by lsb(Lg’).

Therefore, given p;;, a public auditor need only to

make sure that lsb(Lg’) s} lsb(Lj?') = p;j and also

verify that the reported p;; is computed correctly.

To enable auditors making sure that the reported

pij is computed correctly, the evaluators also reveal

the decommitment for a commitment to zero, as
follows:

« Case p;; = 0. Reveal r;; = r;—r;. Then the auditor
verifies that r;; is indeed a decommitment to ¢; —
¢; and so this is a commitment to 0.

o Case p;j = 1. Reveal rjj =r* — (r; +rj). Then the
auditor verifies that r;; is indeed a decommitment
to ¢* = (c; + ¢;) and so this is a commitment to
0.

In the above, note that commmitment arithmetics
is done over the appropriate module defined by the
commitment scheme.

Optimized soldering. While the above works
well, it may be inefficient in cases the input/output
length is large (e.g., for circuits that operate on
128/256 bit integers). This is because of the reliance
on homomorphic commitment, which are typically
built on public-key primitives (e.g., Pedersen com-
mitment [Ped92]).

In the following we provide a high level description
of a novel publicly auditable optimized soldering
mechanism, that builds on the above principles, but
require much less invocations of the homomorphic
commitment tool. The new mechanism does not
rely on the internal instantiation of the garbling
scheme. Surprisingly, when instantiated with the
Half-Gates (or similar) scheme, it allows a complete
reveal of all permutation bits (even though in a
typical usage of it they serve as key role for privacy).
The new mechanism enhances each circuit with a
‘header’ and ’footer’ sub-circuits. For example, the
circuit that computes MULT256 that takes two 256-
bit integers a,b and returns a 256-bit integer c is
enhanced as follows:

« Instead of having only two inputs a, b, the circuit
now has two additional inputs J,, 8p.

3

e The header sub-circuit is hard-coded with two
random secrets @, and ay, picked and known only
to the garbler(s).

« The footer sub-circuit is hard-coded with a ran-
dom secret a., picked and known only to the
garbler(s).

The header computes a* = a —a, + §, and b* =

b — ap + 6p. Then the circuit computes the intended

operation, in this example, this is ¢* = a* + b* and

passes the result to the footer, which computes and
outputs ¢ = ¢* + a,. Overall, this incurs a circuit
increase by three addition/subtraction.

The idea is that input and output to garbled circuits

are public, but are always masked by a one-time pad

that is unknown to the evaluators. The goal of the
header is to remove that one-time pad in order to
get the plaintext arguments a* and b*, and the goal
of the footer is to re-mask the output c*, resulting

in c.

The one-time pads a,, ap, . are secret shared by the

evaluators, which allows them perform the solder-

ing, thereby building a complex garbled circuit out
of many atomic ones. This is done as follows, sup-
pose the output y* of circuit C; is to be connected

to the input x of another circuit C,. Recall that C

doesn’t output y*, rather, it outputs y = y* + ay

where a,, is random and secret shared. To input y*,

the evaluators simply connect the output wires of y

to the input wires of x (this is trivial now because

x,y and the permutation bits associated with them

are public), and reveal 6, = ax — ay, which is also

entered as a public input to C,. The header of C,

now computes x* =X —ay +0x =X~y +ox —ay =

Y* +ay — ax + ax — oy =y*. At this point, the value

x* =y* is ready for the actual computation that the

circuit is intended to perform, as required.

To facilitate public auditability of the soldering, the

evaluators are also equipped with additively homo-

morphic commitments to all masking values, as well
as a secret sharing to their decommitments. In the
above example, the evaluators are equipped with
cy = Com(ay,ry) and ¢y = Com(ay,ry) we well as
secret shares of r, and ry. The evaluators now have
to prove that the revealed J, indeed equals a, —ay.

This can be done by revealing r, —ry, in order for

the auditor to verify that cx —c,; = Com(dyx, 7x —1y).

Cryptographic Building Blocks

3.1. Garbling

A garbling scheme consists of the following algo-

rithms: (we slightly modify the standard definitions from
[BHR12])

o Garble(f) — (F,e,d): on input a circuit f, outputs

a garbled circuit F, encoding information e, and
decoding information d.

« Eval(F,X) — Y: on input a garbled circuit F and

garbled input X, outputs a garbled output Y.

We define a “multiplexer” function Encode as follows. If
w is a n X 2 array of wire labels, and x € {0, 1}", then

Encode(W,x) = (W[1,x:], W[2,x2],..., W[n,x,]).

We insist that a garbling scheme is projective for both
garbled inputs and outputs, meaning that e and d are
such 2D arrays of wire labels. Then a garbling scheme is
correct if, whenever (F,e,d) < Garble(f), we have the
following with probability 1:

Eval(F, Encode(e, x)) = Encode(d, f(x))

Adaptive (circuit-)privacy: Intuitively, the view of the
evaluator (garbled circuit plus a garbled input) leaks no
more than the circuit input/output, even when inputs
are chosen after seeing the garbled circuit. In particular,
they leak nothing about the garbler’s choice of circuit
within some class of functions 7.

Formally, there is a two-stage simulator (Simj, Simy)
such that the following two games are indistinguishable:

receive f € ¥ from adversary
(F,e,d) « Garble(f)

give F to adversary

receive x from adversary

X := Encode(e, x)

give X to adversary

receive f € ¥ from adversary
(F,0) « Sim()

give F to adversary

receive x from adversary

X « Simy(o, x, f(x))

give X to adversary

Note: the simulator does not get to see the choice of
f, so the adversary’s view is independent of f (except
via f(x)) in the game on the right.

Strong (real-or-random) output-label authentic-
ity: When evaluating a garbled circuit, one obtains a
garbled representation of the output y with respect to
the output labels d, which we write as Encode(d,y).
It should be hard to guess wire labels for the comple-
mentary bits (i.e., those that represent the bits of).
We require a strong flavor of this authenticity property,
that the complementary wire labels are indistinguishable
from random. More formally, the following two games
are indistinguishable:

receive f from adversary
(F,e,d) « Garble(f)
give F to adversary
receive x from adversary
X := Encode(e, x)

// real labels encoding

// complementary output:
Y := Encode(d, f(x))
give (X,Y) to adversary

receive f from adversary
(F,e,d) « Garble(f)
give F to adversary
receive x from adversary
X := Encode(e, x)

// dummy/random labels:
Y « ({6, 1}H)*

give (X,Y) to adversary

Input label authenticity: Intuitively, the evaluation
algorithm should detect the presence of erroneous gar-
bled inputs. More formally, the adversary has negligible
probability of winning this game:

receive f from adversary

(F,e,d) « Garble(f)

give F to adversary

receive x and € from adversary

X := Encode(e, x) ® €

adversary wins if Eval(F,X) # L and € # 0*

Instantiating garbled circuits: The state of the art
schemes for boolean garbling are those of Rosulek &
Roy [RR21] and Zahur, Rosulek, and Evans [ZRE15].
The security definitions we have presented here, for
privacy and output authenticity, are compatible with

standard garbling schemes without modification. Our
requirement for input-label authenticity is non-standard,
and would require slightly modifying a standard scheme
as follows: For every input wire w, with labels W, and
Wi, the garbled circuit must include additional hashes
H(w, Wp), H(w, W;). To validate a garbled input, the eval-
uator can hash the given input labels and check for their
presence in the garbled circuit information. When the
hash function is the one used in the garbling scheme,
a standard argument shows that there is no harm to
security by including these additional wire label hashes.

3.2. Setup Functionalities

Our protocol requires two setup functionalities:
Fa-com and Fy_com- Both are homomorphic secret-sharing
functionalities: senders (one or many, if they have con-
sensus) can share a value among the receivers. Re-
ceivers (if they have consensus) can open any linear
combination of shared values. In F4.com, the results are
authenticated, meaning that receivers will obtain the
correct value (or else abort). In Fycom, the results are
unauthenticated, meaning that a corrupt receiver can
inject an additive error into the opened value.

TU’COTTD ﬁ—com
on input (store, k,0) from all senders:

set V[k] :=0
give (store, k) to all receivers

on input (add-const, k, c;k”) from all receivers:
set VIK'] =V[k] +¢
give (add-const, k, c;k’) to all receivers

on input (reveal,k; + k; +---) from all receivers:
v=V]ki]+V][ks] +---
in the Fy-com functionality only:
if any receiver is corrupt, await € from simulator
vi=U+e
give (reveal,k,v) to all receivers

Instantiating the setup functionalities. Our protocol
requires protocols for such functionalities, secure in the
corruption settings we consider. Namely, they should
be secure against a dishonest majority of senders, or
a dishonest majority of receivers.

One potential instantiation of F.com is through sim-
ple additive secret sharing. The senders initially choose a
common seed s, known only to them. To implement the
(store, k,v) command, they generate an additive secret
sharing of v, with randomness derived pseudorandomly
from s. In this way, they compute exactly the same
individual shares. Each sender distribute shares to the
corresponding receivers, who then ensure that they have
received identical shares from all senders. The additive
homomorphic feature of additive sharing is standard.
The receivers open a shared value by first committing
to their shares and then opening. There is no guarantee
that corrupt receivers commit to their correct shares, but
by using a round of commitments, the effect of incorrect
shares is that of adding a known error € to the opened
value.

Facom can be instantiated with authenticated secret
shares, using either the BDOZ method [BDOZ11] or the
SPDZ method [DPSZ12]. The senders act as the dealer
in these secret sharing schemes, and values are opened
using the secure opening protocols of these schemes.

We require the sharing to be additively homomorphic
with respect to some group. Our protocol uses Fy-com for
wire labels, so the group can be strings of length A with
respect to the XOR operation. We need F,.com to have
homomorphism with respect to a group G (which may
be ({06, 1}*, ®) but need not be) which is discussed below.

Public verifiability: The public verifiability of our
main protocol rests on the public verifiability of the
Fa-com functionality. That is, the commitments should
be binding from the perspective of an external judge,
even if all receivers are corrupt.

BDOZ and SPDZ authenticated sharings are not
binding in this way; if all receivers are corrupt, then
they can easily falsify the transcript of an opening. To
achieve public verifiability, then, the senders should com-
mit to the value using a Pedersen commitment (which
it publishes, e.g., in the ledger), then additively share
the opening/decommitment value among the receivers.
Then, cheating among receivers is irrelevant because
binding is inherited directly from the Pedersen com-
mitment, and not from the corruption threshold. We
are not aware of any Pedersen-like commitment sup-
porting XOR homomorphism, but only homomorphism
on (Z,,+). We also note that Pedersen commitments
operate homomorphically on both the committed value
and the decommitment values, so evaluators are able to
homomorphically compute the necessary sharings of the
decommitment values.

4 Our Main Protocol

4.1. Opcodes & Transactions

We begin by formalizing our notation for transac-
tions. Let (G, +) be a group. An opcode is a determin-
istic function f : G™ — G™. (The purpose of requiring
a group operation over these values will be explained
later.) For ease of explanation, we assume all opcodes
have the same number of inputs/outputs, but this is not
a fundamental limitation of our protocol techniques.

Intuitively, a transaction is a directed acyclic graph
(or simply a circuit) of opcodes, whose inputs are either
public values or system key values. Formally, a transac-
tion T consists of the following;:

« T.ops is an ordered sequence of opcode ids.
o T.in(i, j) indicates where input j of opcode i comes
from. There are three possibilities:
- T.in(i, j) = (key, P) means the input is K[P]
- T.in(i,j) = (const,v) means the input is public
constant v
- T.in(i,j) = (conn,i’,j’) means the input comes
from output j’ of opcode i’.
e T.conn is the set of all (i’,j’,i,j) such that
T.in(i, j) = (conn,i’,j’). In other words, output j’
of op i’ becomes input j of op i.

o T.out is a list of (i, j) pairs, indicating that output
j of op i is a transaction-level output.
Such a transaction must satisfy the following:
« Topological ordering: if T.in(i, j) = (i’,j’) then i’
comes before i in T.ops list.
 No fan-out: for all (i, j’), there is at most one tuple
of the form (i’,’,,-) in T.conn.
Running a transaction, with respect to a mapping f of
ids — functions, and a mapping K of key-names — keys,
refers to the following process:
RUN(T, f,K):
for each i € T.ops:
for each input j:
if T.in(i, j) = (key, P): x[i, j] := K[P]
if T.in(i, j) = (const,v): x[i, j] :=0
if T.in(i, j) = (conn, ', j'): x[i, j] == y[i’, j’]
yli -] = fLil(x[i.-])

for each (i, j) € T.out:
out = outl|y[i, j]
return out

4.2. The Ideal Functionality

The ideal Fgevm functionality is given below:

Facvm

on command (keygen, P) from all garblers:

// P may be L, indicating network key
if K[P] undefined: K[P] « {0, 1}
give (keygen,K[P]) to party P

on command (new-op, f) from all garblers:

give (new-op, f) to the simulator; await response i

flil=f

give (new-op, f,i) to all evaluators

on command (run,T) from all evaluators:
for all i € T.ops: assert f[i] defined

out := RUN(T, f,K)

for all i € T.ops: delete f[i] // (single use)
give (run,T,out) to all evaluators

4.3. Protocol Intuition & Concepts

For an opcode f : G™ — G™ and vectors a, f € G™,
we define its masked version f; 5 as:

fap(x,0) = f(X—a) + p+ 6.

Note that a, §,x, 6 are all vectors in G™. The class of all
maskings of f is denoted:

mask(f) = {fap | @ f € G"}

Our protocol evaluates opcodes in a masked fashion, as
follows:

« Garblers will generate a collection of (garbled) op-
codes, with secret a, f masks hard-coded in, and
hidden by the garbling.

 During run-time, if the plaintext input to opcode f
is x, then the masked value ¥ = x + a is assumed
to be public to the evaluators.

o The purpose of § inputs to allow a masked opcode
circuit to mask its output using the input mask of
a downstream opcode. In other words, the output
of one opcode circuit is masked in exactly the
manner that the next opcode circuit expects. Note
that the masks for each garbled circuit are chosen
independently, before the transaction’s connection
topology is known. This is why § must be an input
to the circuit.

Garbling masked opcode circuits: In the simplest
case, we take G = ({6, 1}*, ®). Standard boolean garbled
circuits support masking in this G, essentially “for free”
In the standard point-and-permute paradigm, a and
B can be the garbler’s secret “permute bits” on the
input/output wires. Then a garbled encoding of input
x is already designed to reveal a @ x.

But our protocol requires an F,com functionality that
is homomorphic with respect to the same group G as the
garbling masks. Not all instantiations of F,.com support
XOR homomorphism — specifically, instantiations using
Pedersen commitments support only G = (Z,,+). In
these cases, the garbled circuit must “manually” encode
the masking/unmasking operations with extra circuitry.

Common notation: We use the following conventions:
o i = id of opcode instance

e j = logical input/output of an opcode (a group
element)*

o k = particular bit in the binary encoding of a group
element

So, (i, j, k) may refer to the kth bit in the encoding of
the jth input to the ith opcode instance.

Garbling notation: We garble masked opcodes of the
form f, 5, which have two input vectors: x and 6. We
partition the garbled input information e (and garbled
input labels X) into two parts: e, and es (resp., Xy and
Xs).

Thus, ex[j, k,b] denotes the wire label representing
that the kth bit of x[j] is b.

Overview of soldering: Suppose for simplicity each
opcode has a single input and single output, and that a
certain transaction requires the output of opcode f to
become the input of opcode f’. The garblers will have
already produced a garbled (masked) opcode circuits f; g
and f;/ﬁ,. They will also have distributed homomorphic
commitments to the a, f, &', f’ masks.

During evaluation time, the evaluators will induc-
tively obtain the masked input X = x + « for opcode f.
To connect the f and f’ circuits, they combine homo-
morphic commitments of @’ and f to reveal the value
6 = a' — p. Now the plaintext values x and § will be
the inputs to the masked f, 4 circuit. As a result, this
masked circuit will compute:

Jap(%.6) =f(X—a)+p+6
:f((x+a)—a)+ﬂ+(a'—ﬂ):f(x)+a’

In this way, the output of this masked circuit is the
opcode output f(x), masked with the correct mask (a’)
for the next circuit.

4. j is relevant for the non-binary case, or if we have multiple output
one for different circuit.

The benefit of having the output of one circuit exactly
equal the input of the next circuit is that the garbled
encodings of these values can be easily translated. In
particular, suppose d represents all output labels of the
fap circuit, and e’ represents all input labels (for the
“x-input” but not “S-input”) of the f, , circuit. Then
the evaluators can homomorphically reveal (essentially)
d & e’. Think of this as a n X 2 matrix of one-time pad
ciphertexts, where each output label of f, s is used to
mask the matching input label of fé,,ﬁ,. (Our strong
output authenticity property ensures that it is safe to
use output labels as one-time pads in this way.) So
after evaluating f, g, the evaluators can (for each wire)
decrypt the corresponding one-time pad ciphertext to
learn (non-interactively) the garbled input for ﬁ;’,ﬁ”

4.4. Protocol Description

Our protocol requires the following:

e an instance of %,.com over the group (G, +), which
is the same group as for masking opcodes.

« an instance of %y.com, Which can be over the group
({o.1}%, @)

The formal description is given in Figure 3.

5 Security Analysis

Theorem 1. If (Garble, Eval) is a garbling scheme sat-
isfying the properties listed in Section 3.1, then our
protocol UC-securely realizes Fgcvm in the presence of
an adversary who corrupts all but one garbler, or all
but one evaluator.

Additionally, correctness (public verifiability) is guar-
anteed even against an adversary who corrupts all but
one garbler and any number of evaluators, as long as
Fa-com 18 binding in the presence of one honest sender.

We defer full proofs to the full version, and provide
only high-level sketches in this version. We divide the
analysis into three cases, depending on the corruption
scenario.

Corrupt garblers only:

Note that F4-com and Fy-com require consensus from
all garblers for store commands, and evaluators (who
are honest) also require consensus from garblers about
the garbled circuits F. Thus, since we assume at least
one honest garbler, any corrupt garbler who does not
strictly follow the protocol will cause it to abort. This is
straight-forward to simulate.

Corrupt evaluators only: We assume that at least one
evaluator is honest. Then since F,-com and Fy-com require
consensus from all evaluators for reveal commands,
the adversary cannot reveal any result besides what the
protocol prescribes. However, in the case of Fy.com, the
adversary can contribute an additive error to the value
that is opened. In our protocol, (we show that) honest
parties abort if the adversary uses any nonzero error.
Simulating this effect is relatively straightforward.
Thus the main role of the simulator is to simulate
the garbled circuits, garbled inputs, and the outputs of

initially:
garblers perform coin tossing to obtain secret gk
evaluators perform coin tossing to obtain secret ek

on command (keygen, P):

// P may be L, indicating network key
every garbler does:
R := PRF(gk, (prekey, P))
send (store, (pre-key, P),R) to Fa-com
(if P # 1) send R to P through a secure channel
every evaluator does:
await (store, (pre-key, P)) from F4com
R’ := PRF(ek, P)
send (add-const, (pre-key, P), R’; (key, P))
(if P # L) send R’ to P through a secure channel
party P does:
ensure identical R received from every garbler
ensure identical R’ received from every evaluator
store R+ R’ as gcEVM key

on command (new-op, f):

every garbler does:
counter := counter + 1
a, f := PRF(gk, (alpha-beta, counter))
r := PRF(gk, (garble-seed, counter))
(F,e,d) = Garble(fo ;1)
i := CRHF(F)

for each logical input j:

send (store, (alpha, i, j),a[j]) to Fa-com

send (store, (beta, i, j), f[j]) to Fa-com

for each encoding bit k and b € {0,1}:

send the following to Fy-com:

(store, (in-label-x, i, j, k, b), ex[Jj, k, b])
(store, (in-label-delta, i, j, k, b),es|Jj, k, b])
(store, (out-label, i, j, k,b),d[], k, b])

broadcast (new-op, f,i, F) to all evaluators

every evaluator does:
abort if any of the following are violated:
all (store,---) outputs received from Fa-com/Fu-com>
as expected
identical (new-op, f,i, F) received from all garblers
i = CRHF(F)
store F[i] :==F

on command (run,T):

every evaluator does:

// compute § inputs:

for every (i, j,i’,j) € T.conn:
send (reveal, (alpha,i’, ') — (beta, i, j)) to Fa-com
await response (reveal,---,d[i, j])

for every (i, j) € T.out:
send (reveal, —(beta, i, j)) to Fa-com
await response (reveal,---,d[i, j])

// obtain garbled § inputs:

for every (i, j) and every encoding bit k:
write 8[i, j] in binary, so that & is its kth bit
send (reveal, (in-label-delta,i, j, k, 5k)) to Fu-com
await response (reveal,---,Xs[i, j, k])

// soldering
for every (i, j,i’,j’) € T.conn and b € {0,1}:
send (reveal, (out-label,i, j, k,b) + (in-label-x,i’, j’, k, b))
to ﬁ—com
await response (reveal,---,A[i, j, i, j’,k, b])

// obtain (masked) transaction inputs:
for every (i, j) such that T.in(i, j) # (conn,---):
if T.in(i, j) = (const,v):
send (reveal, (alpha, i, j) + 0) to Facom
await response (reveal,---,x[i, j])
else T.in(i, j) = (key, P):
send (reveal, (alpha, i, j) + (key, P)) to Fa-com
await response (reveal,---,x[i, j])
write X[i, j] in binary, so that its kth bit is x[i, j]x
for every encoding bit k:
send (reveal, (in-label-x, i, j, k,X[i, j]x)) to Fu-com
await response (reveal,---,X[i, j, k])

// evaluation:
for every i € T.ops:
for each input j and encoding bit k:
if T.in(i, j) = (conn,{’, j’):
// masked output §[i’, j']| defined previously
x[i, j] =g[i’, J']
Xeli, jok] = Y[, j/ k]l ® A7, j', 4, j k. % (i, jli]
else: (X [i, j, k] already defined previously)

Y[i,-] := Eval(F[i], Xx [, 1| Xs[i, -]1) // abort if this step returns L
li,] := Decode(Y/[i.-])
delete F[i]

// output:

for every (i, j) € T.out:
out = out||y[i, j]

output (run, T, out)

Figure 3. Formal protocol description.

the Focom and Fucom functionalities. We describe the
simulator below:

simulator

upon receiving (new-op,) from Fyevm:

simulate expected (store,---) messages from Fcom/%Fa-coms
as prescribed in protocol description

generate simulated garbled circuit F (for circuit class mask(f]

reply to Fgeym with i = CRHF(F)

store F[i] :==F

simulate broadcast (new-op, f, i, F) from all garblers

command (run,T):
for every (i, j):
8lijl — G
sample x[i, j], j[i, j] « G, subject to
x[i, j1 = gli’, j’] for all (i, j’,i,j) € T.conn
for every i € T.ops:
run the second phase of GC simulator for F[i],
with plaintext input (x[i,-],8[i,-]) and output §[i,],
obtaining (simulated) garbled input Xx[i, -] and Xs[i,
Y[i,-] = Eval(F[i], X« [i, -][IXs[i, -])
for every (i, j,i’,j') € T.conn:
b=x[1", j']«
/Y =1li, jlx = the bit that will actually be visible on this w
Alij, 7', ' k, b] == Y[i, j, k] ® Xc [, ', k]
Ali, j, i’ j' k,1 = b] « {0, 1}*

wait for all corrupt evaluators to send the prescribed
reveal commands to Fa-com/Fu-com
simulate Fa-com/%u-com responses using variable

error for responses from Fy-com

if nonzero error was added to any X.[i, j, k], Xs(i, j, k],
or Ali, j, 7', j, k. gli, jli]:
simulate that the honest parties aborted

Below we summarize the sequence of hybrids that
establish indistinguishability between the real and ideal
worlds:

 (Real world:) simulation plays the role of all honest
parties and setup functionalities.

 (Hybrid 1 introduces the following change:) If the
adversary provides nonzero error for an Fy.com-
response that is actually used (either an X, Xs
value, or A[i, j,i’,j’,k,b] value for the correct b),
then honest parties abort. This hybrid differs from
the previous only in the bad event that a nonzero
error would not have caused honest parties to abort.
Using a reduction to the input authenticity prop-
erty, this bad event can be shown to have negligible
probability, and hence the change is indistinguish-
able.

e (Hybrid 2 introduces the following change:) Sim-
ulate A[i, j,i’,j’,k,1 — b] values (where b is the
“correct” value), as output by Ficom in the sol-
dering phase, as random strings. This change is
indistinguishable by a straight-forward reduction to
the real-or-random output authenticity property of
garbling. Appealing to that security game, we are
able to replace correct complementary output labels
Y[i, j, k,1 — b] with random strings. But each such
output label is used only in the computation of a
single A value (because of our fan-out restriction),
acting as a OTP.

« (Hybrid 3 introduces the following change:) Replace

names defined above, and adding the adversary-provided

re

real garbled circuit F[i] and garbled input X[i, -]
with simulated ones. The garbled circuit is produced
during new-op, and the garbled input produced
after the simulator knows the input/output of each
opcode circuit (the public, masked values). Thus we
have a straight-forward reduction to the adaptive
security of the garbling scheme. The simulation
does not need the output labels d[:], only the
visible garbled output, which can be computed by
evaluating the garbled circuit. Note that after this
change the simulator simulates the garbled circuit
without using its «, f parameters.

e Now the a, § values are used only to compute the
reveal-output values from Fycom/Fa-com (namely,
d values and x values). Because of the fan-out re-
striction on the transaction, a uniform distribution
over &’s and f’s induces a uniform distribution over
these Fu-com/Fa-com outputs. Thus, this hybrid is
identical to the ideal world with the simulator we
have defined above.

Corrupt garblers and evaluators (public verifiabil-
ity): In this setting we assume the presence of at least
one honest garbler, although all evaluators may be cor-
rupt. If the adversary corrupts a mixture of garblers and
evaluators, then privacy is compromised. However, we
claim that the protocol achieves guaranteed correctness
/ public verifiability.

The proof boils down to the following essential
claims:

1) The protocol requires total consensus from the gar-
blers about the garbled circuits and the homomor-
phic commitments. So if at least one garbler is
honest, then all garbled circuits and homomorphic
commitments are correct.

If Fa-com is binding even when all receivers are
corrupt, then all of the F,.com Openings must be
correct with respect to the underlying a, § masks
and the network keys. In particular, the masked
inputs and the § values are correct and consistent
with the o, f masks hard-coded into the opcode
circuits.

Homomorphic openings in Fy-com need not be cor-
rect in this case. However, if these are not opened
correctly, then the input authenticity property of
the garbled circuit (which is correct) ensures that
garbled evaluation will abort with overwhelming
probability.

Thus, if evaluation does not abort, we may conclude
that the correctly generated garbled circuits are being
evaluated on the correct input labels that encode the
correct transaction inputs.

2)

3)

6 Geth Integration & PoC Evalua-
tion.

Integration with Go-Ethereum. We forked the Go-
Ethereum repository [Eth25] and extended it in two
aspects:
« Consensus-Execution Separation. As explained
above, we separate the two sub-networks. The

consensus sub-network can be permissionless and
follow the Ethereum 2.0 Gasper PoS protocol
(see [BG17]), however, in our PoC we used a
version of Ethereum PoA, with some modification
to facilitate the consensus-execution separation.
The execution sub-network is permissioned
(PoA) and benefits from synchronous decryption
mechanism (in contrast to the new fhEVM version
that transitioned to asynchronous decryption®).
Synchronous decryption is important for smart
contract developers, as they can utilize the same
code-flow as they are used to from the usual
(non privacy preserving) contract coding. The
async decryption architecture forces developers
using ‘callbacks’ for getting a decryption results,
which complicates the code and makes it less
understandable. We utilize the “difficulty’ parameter
in order to work with two block types: canonical
and non-canonical (see Figure 1) and yet have
minimal code changes. The difficulty parameter
is used in PoW and PoA protocols to determine
the chain’s head according to the different chains
accumulated weight. We fix different difficulty
values X and Y to non-canonical (NC) and
canonical (CA) blocks, respectively, such that
X < Y. This way, the next canonical block surely
override its predecessor non-canonical one. The
following is an example of the first few blocks of
the chain:

Block #0 CA. Genesis

Block #1 NC(parent=#0, difficulty=X)
Block #1 CA (parent=#0, difficulty=Y)

Block #2 NC(parent=#1, difficulty=X)
Block #2 CA (parent=#1, difficulty=Y)

Block #3 NC(parent=#2, difficulty=X)
Block #3 CA (parent=#2, difficulty=Y)

o Instruction Set Extension. We use Ethereum’s stan-
dard interface to extend the EVM with more func-
tionality using precompiled contracts. In our case,
we extend it with functionality that triggers secure
computation. A solidity library MpcCore.sol facil-
itates a convenient way to trigger secure compu-
tation related functionalities. That library defines
the necessary types (e.g., itUint64, ctUint64,
gtuint64 for 64-bit integer input-text, cipher-text
and garbled-text; see Section 2.1 for more explana-
tion) and the functionalities that can work on these
types. ©

The MPC instantiation. The MPC version evaluated
in this PoC includes a protection from malicious ad-
versaries, but does not provide public auditability. In
addition, current soldering happens online rather than
offline (see Section 2.3), meaning that the parties spend
two communication rounds before each GC evaluation.
This PoC consists of two replicated garblers (producing
exactly the same GCs) so if one malicious garbler pub-
lishes incorrect GCs (which are different than the ones

5. See https://www.zama.ai/post/fhevm-v0-4
6. See https://anonymous.4open.science/r/gcvm-DDC5/MpcCore.sol
for a full list of supported types and functionalities.

published by the honest garbler) the protocol halts until
the attacker is eliminated. In addition, it consists of two
evaluators. The concrete guarantees in this model are
as follows: (i) corruption of at most one party (either
garbler or evaluator) leaves both correctness and privacy
intact; (i) corruption of both evaluators or both garblers
breaks both correctness and privacy; and (iii) corrup-
tion of an evaluator and a garbler breaks privacy but
not correctness. The garbling scheme used is the Half-
Gates [ZRE15], and the authenticated secret sharing is
instantiated with IT-MACs originated from the garblers.
That is, a share p; of a permutation bit p held by the
first evaluator is associated with a MAC M[p,] € {0, 1}*.
To reveal p; to the second evaluator, the first evaluator
sends p; and M[p;], upon which the second evaluator
verifies that M[p1] = P[p1] @ p1 - K, where K is the
global secret MAC key held by the second evaluator,
M[p1] is given to the first evaluator and P[p;] is a
secret random pad given to the second evaluator. The
garblers are responsible for distributing these values
to the evaluators. It is easy to see that IT-MACs are
XOR-homomorphic, which enables authentication XOR
of secret shared bits. See more details on IT-MAC in
Section C.

We note that public auditability, offline soldering,
and increasing the number of parties are ongoing work
on which we plan to report in the full paper.

gcVM configuration. The main advantage of the gcVM
is expressed by the fact that the evaluators can store
many GCs in a local inventory, so they can get ready for
a burst event that requires a pick consumption. Specif-
ically, the evaluators are configured with a capacity
argument for the circuit of each opcode, which means
that they keep accepting GCs from the garbler until
that capacity is filled. For instance, given 1000 Transfer
GCs, 3000 Onboard GCs and 2000 0ffboard GCs in the
evaluators’ inventory, they can still process 1000 confi-
dential ERC20 (CERC20) transfers even in an extreme
cases when garblers are disconnected (See illustration
in Figure 7). The gcVM version on which we report is
configured with:

 Block interval of 5s, meaning that the sequencer
sub-network publishes the next non-canonical block
5 seconds after the last canonical block is sealed.

 Capacities for Transfer, Onboard and Offboard is
set to 2000, 6000, and 4000, respectively.

« Block gas limit is set to 310,000,000. This means that
up to 1000 CERC20 can fit in a single block.

To increase ctps one can reduce the block interval time,
increase the capacities and increase the block gas limit.

Deployment and benchmarks. The MPC nodes are
deployed over a 5Gb network on AWS (all in North
Virginia), on r5n.2xlarge on-demand instances. Metrics
of interest to evaluated are:

e The gcVM throughput, which is measured by the
number of CERC20 transfers per second, or ctps.
 The dollar cost burden on MPC nodes per CERC20

transfer.

We measure CERC20 throughput using the following
setup:

https://www.zama.ai/post/fhevm-v0-4
https://anonymous.4open.science/r/gcvm-DDC5/MpcCore.sol

Block Performance Data

@
S

=
=]

o
S

—e— Avg Txn/s
Transactipns per Second |

w
<]

NI
]

o]
<]

Transactions per Second
I w &
S S 3

"
5]

L

o

231 241

-
I mm purations)

m

301 311

N
S

A
&

Block duration (seconds)

o
5]

w

o

Block Number

Figure 4. Throughput test summary. Note that avg. ctps drops after inventory is drained, but remains stable afterwards, implying that increasing
the inventory can keep a high ctps for a longer period. Each gray bar represents a block; its height indicates the calculated ctps. The red line on

top of a gray bar indicates the time to execute that block.

Onboard amount

Onboard balanceA Onboard balanceB

Transfer Offboard balanceA Offboard balanceB

~ Y \

Y
Online
Soldering

<
+

-
>

Offline
Soldering . 2.07ms

< -
< Ld

4,03 ms

10.74 ms

Figure 5. CERC20 time consumption breakdown on a single threaded evaluator. The left and right white margins represent Geth’s tx preparation
and finalization, and in between there are 6 segments: 3 for onboarding the balanceA, balanceB, amount ciphertexts (transforming them into
garbledtext), then the Transfer operation, followed by 2 0ffboard operation transforming the updated balanceA, balanceB back into ciphertexts.
Each segment begins with a precompiled contract call preparation (light gray), followed by the online soldering rounds (dark gray), finally followed

by the actual GC evaluation (black).

e We ran 10 EOA accounts in parallel. Each account
was programmed to send 10,000 transfers, resulting
in a burst of 100,000 transactions processed in total.

o All accounts sent transactions to a pre-deployed
cERC20 contract.’

o The accounts were fully onboarded prior to the start
of the test, so the users onboarding process and
its associated transactions were excluded from the
scope.

The results are summarized in Figure 4 and show the
following: over 1930 seconds (32 minutes) and 102 blocks
we get an average of 56.17 ctps, with minimum of 31 and
maximum of 82.5 ctps.

A typical CERC20 time consumption breakdown of
handling a CERC20 transfer is depicted in Figure 5. The
top chart is the actual transaction breakdown in our
implementation that currently utilizes online soldering,
whereas the bottom chart demonstrates the anticipated
improvement when optimizing with offline soldering per
transaction. This offline soldering can be further pushed
to reduce overall time if performed once for many trans-
actions (and potentially the entire block). The core GC
evaluation time takes only 2.07ms on a single threaded
evaluator, which, given a client more optimized than
Geth (e.g., Reth®), can take us to about 500 ctps, before
parallelization.

The dollar cost per CERC20 transfer per evalua-
tor is calculated based on (i) an hourly rate of the
instances used ($0.59); (ii) an average throughput of

7. The contract can be found here https://anonymous.4open.science/
r/gcvm-DDC5/PrivateERC20Contract.sol
8. See https://github.com/paradigmxyz/reth

56 ctps (before any optimization); and (iii) the cross-
region data transfer costs $0.0050/GB, considering each
CERC20 incurs data transfer of 1TMB (dominated by
5 garbled circuits for decryption/encryption, each of
200KB). We get that the cost per transfer is $0.000008 =
0.59/3600/50 + 0.0050/1024, or 0.0008 cents.

References

[Arb23] Arbitrum. Arbitrum (ARB) Deep Dive: Infrastructure, ARB
Ecosystem and Competitors. https://zerocap.com/insights/

research-lab/arbitrum-arb-deep-dive/, 2023.

[ASH*20] Jackson Abascal, Mohammad Hossein Faghihi Sereshgi,
Carmit Hazay, Yuval Ishai, and Muthuramakrishnan
Venkitasubramaniam. Is the classical GMW paradigm
practical? The case of non-interactive actively secure 2PC.
In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, ACM CCS 2020, pages 1591-1605. ACM
Press, November 2020.

[BAZB20] Benedikt Biinz, Shashank Agrawal, Mahdi Zamani, and
Dan Boneh. Zether: Towards privacy in a smart contract
world. In Joseph Bonneau and Nadia Heninger, editors,
FC 2020, volume 12059 of LNCS, pages 423-443. Springer,

Cham, February 2020.

[BCG*14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, lan Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE Symposium on Security and
Privacy, pages 459-474. IEEE Computer Society Press, May
2014.

[BCG*20] Sean Bowe, Alessandro Chiesa, Matthew Green, lan Miers,
Pratyush Mishra, and Howard Wu. ZEXE: Enabling de-
centralized private computation. In 2020 IEEE Symposium
on Security and Privacy, pages 947-964. IEEE Computer

Society Press, May 2020.

https://anonymous.4open.science/r/gcvm-DDC5/PrivateERC20Contract.sol
https://anonymous.4open.science/r/gcvm-DDC5/PrivateERC20Contract.sol
https://github.com/paradigmxyz/reth
https://zerocap.com/insights/research-lab/arbitrum-arb-deep-dive/
https://zerocap.com/insights/research-lab/arbitrum-arb-deep-dive/

[BCT21]

[BDO14]

[BDOZ11]

[BG17]

[BHR12]

[BOSS20]

[BT22]

[ByCDF23]

[Dai22]

[DOS20]

[DPSZ12]

[Eth25]

[FHKS21]

[FJN*13]

[FINT15]

[Fou23]

Aritra Banerjee, Michael Clear, and Hitesh Tewari.
zkhawk: Practical private smart contracts from mpc-based
hawk. CoRR, abs/2104.09180, 2021.

Carsten Baum, lvan Damgard, and Claudio Orlandi. Pub-
licly auditable secure multi-party computation. In Michel
Abdalla and Roberto De Prisco, editors, SCN 14, volume
8642 of LNCS, pages 175-196. Springer, Cham, September
2014.

Rikke Bendlin, lvan Damgard, Claudio Orlandi, and Sarah
Zakarias. Semi-homomorphic encryption and multi-
party computation. In Kenneth G. Paterson, editor, EU-
ROCRYPT 2011, volume 6632 of LNCS, pages 169-188.
Springer, Berlin, Heidelberg, May 2011.

Vitalik Buterin and Virgil Griffith. Casper the friendly
finality gadget. CoRR, abs/1710.09437, 2017.

Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway.
Foundations of garbled circuits. In Ting Yu, George
Danezis, and Virgil D. Gligor, editors, ACM CCS 2012,
pages 784-796. ACM Press, October 2012.

Carsten Baum, Emmanuela Orsini, Peter Scholl, and Ed-
uardo Soria-Vazquez. Efficient constant-round MPC with
identifiable abort and public verifiability. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part Il, volume 12171 of LNCS, pages 562-592. Springer,
Cham, August 2020.

Aritra Banerjee and Hitesh Tewari. Multiverse of hawk-
ness: A universally-composable mpc-based hawk variant.
Cryptogr., 6(3):39, 2022.

Carsten Baum, James Hsin yu Chiang, Bernardo David,
and Tore Kasper Frederiksen. Eagle: Efficient privacy
preserving smart contracts. In Foteini Baldimtsi and
Christian Cachin, editors, FC 2023, Part I, volume 13950
of LNCS, pages 270-288. Springer, Cham, May 2023.

Wei Dai. PESCA: A privacy-enhancing smart-contract
architecture. Cryptology ePrint Archive, Report 2022/1119,
2022.

Ivan Damgard, Claudio Orlandi, and Mark Simkin. Black-
box transformations from passive to covert security with
public verifiability. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part Il, volume 12171
of LNCS, pages 647-676. Springer, Cham, August 2020.

lvan Damgard, Valerio Pastro, Nigel P. Smart, and Sarah
Zakarias. Multiparty computation from somewhat ho-
momorphic encryption. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 643-662. Springer, Berlin, Heidelberg, August 2012.

Ethereum Foundation and Contributors. go-ethereum: Go
implementation of the Ethereum client. https://github.
com/ethereum/go-ethereum/, 2025.

Sebastian Faust, Carmit Hazay, David Kretzler, and Ben-
jamin Schlosser. Generic compiler for publicly verifi-
able covert multi-party computation. In Anne Canteaut
and Frangois-Xavier Standaert, editors, EUROCRYPT 2021,
Part I, volume 12697 of LNCS, pages 782-811. Springer,
Cham, October 2021.

Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jes-
per Buus Nielsen, Peter Sebastian Nordholt, and Claudio
Orlandi. MiniLEGO: Efficient secure two-party compu-
tation from general assumptions. In Thomas Johansson
and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 537-556. Springer, Berlin, Heidelberg,
May 2013.

Tore Kasper Frederiksen, Thomas P. Jakobsen, Jesper Buus
Nielsen, and Roberto Trifiletti. TinyLEGO: An interactive
garbling scheme for maliciously secure two-party compu-
tation. Cryptology ePrint Archive, Report 2015/309, 2015.

Oasis Protocol Foundation. Oasis network: Confiden-
tial smart contracts using tees. https://oasisprotocol.org/,
2023.

[Gen09]

[HKK*19]

[KM15]

[KMS*16]

[KNR*17]

[LP09]

[Mon23]

[Net23]

[NO09]

[Oas]
[Par21]

[Ped92]

[RR21]

[SBG*+19]

[Sec]
[SV15]

[SWA23]

Craig Gentry. Fully homomorphic encryption using ideal
lattices. In Michael Mitzenmacher, editor, 41st ACM STOC,
pages 169-178. ACM Press, May / June 2009.

Cheng Hong, Jonathan Katz, Vladimir Kolesnikov, Wen-
jie Lu, and Xiao Wang. Covert security with public
verifiability: Faster, leaner, and simpler. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part Ill,
volume 11478 of LNCS, pages 97-121. Springer, Cham,
May 2019.

Vladimir Kolesnikov and Alex J. Malozemoff. Public veri-
fiability in the covert model (almost) for free. In Tetsu
Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015,
Part I, volume 9453 of LNCS, pages 210-235. Springer,
Berlin, Heidelberg, November / December 2015.

Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen,
and Charalampos Papamanthou. Hawk: The blockchain
model of cryptography and privacy-preserving smart con-
tracts. In 2016 IEEE Symposium on Security and Privacy,
pages 839-858. IEEE Computer Society Press, May 2016.

Vladimir Kolesnikov, Jesper Buus Nielsen, Mike Rosulek,
Ni Trieu, and Roberto Trifiletti. DUPLO: Unifying cut-and-
choose for garbled circuits. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 2017, pages 3-20. ACM Press, October / November
2017.

Yehuda Lindell and Benny Pinkas. A proof of security
of Yao’s protocol for two-party computation. Journal of
Cryptology, 22(2):161-188, April 2009.

The Monero Project. Monero: Secure, private, untraceable
cryptocurrency. https://www.getmonero.org/, 2023.

Phala Network. Phala: Confidential smart contracts with
trusted execution environments. https://phala.network/,
2023.

Jesper Buus Nielsen and Claudio Orlandi. LEGO for
two-party secure computation. In Omer Reingold, editor,
TCC 2009, volume 5444 of LNCS, pages 368-386. Springer,
Berlin, Heidelberg, March 2009.

The Oasis standard body. http://www.oasis-open.org.

Partisia. Partisia blockchain: A web 3.0 public blockchain
built with mpc for trust,transparency, privacy and speed
of light finalization. 2021.

Torben P. Pedersen. Non-interactive and information-
theoretic secure verifiable secret sharing. In Joan Feigen-
baum, editor, CRYPTO’91, volume 576 of LNCS, pages 129-
140. Springer, Berlin, Heidelberg, August 1992.

Mike Rosulek and Lawrence Roy. Three halves make
a whole? Beating the half-gates lower bound for gar-
bled circuits. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part I, volume 12825 of LNCS, pages 94—
124, Virtual Event, August 2021. Springer, Cham.

Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa
Melchior, Petar Tsankov, and Martin T. Vechev. zkay:
Specifying and enforcing data privacy in smart contracts.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, ACM CCS 2019, pages 1759—
1776. ACM Press, November 2019.

Secret. Secret network graypaper.

Berry Schoenmakers and Meilof Veeningen. Univer-
sally verifiable multiparty computation from threshold
homomorphic cryptosystems. In Tal Malkin, Vladimir
Kolesnikov, Allison Bishop Lewko, and Michalis Poly-
chronakis, editors, ACNS 2015, volume 9092 of LNCS,
pages 3-22. Springer, Cham, June 2015.

Ravital Solomon, Rick Weber, and Ghada Almashaqgbeh.
smartFHE: Privacy-preserving smart contracts from fully
homomorphic encryption. In 2023 IEEE European Sympo-
sium on Security and Privacy, pages 309-331. IEEE Com-
puter Society Press, July 2023.

https://github.com/ethereum/go-ethereum/
https://github.com/ethereum/go-ethereum/
https://oasisprotocol.org/
https://www.getmonero.org/
https://phala.network/
http://www.oasis-open.org

[XCZ*23] Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang, Benedikt
Biinz, Ben Fisch, Fernando Krell, and Philippe Camacho.
VeriZexe: Decentralized private computation with univer-
sal setup. In Joseph A. Calandrino and Carmela Troncoso,
editors, USENIX Security 2023, pages 4445-4462. USENIX

Association, August 2023.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange
secrets (extended abstract). In 27th FOCS, pages 162-167.

IEEE Computer Society Press, October 1986.

[Zam] Zama. Zama fhevm: Fully homomorphic encryption
for the ethereum virtual machine. https://github.com/

zama-ai/fhevm.

[ZDH19] Ruiyu Zhu, Changchang Ding, and Yan Huang. Efficient
publicly verifiable 2PC over a blockchain with applications
to financially-secure computations. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, ed-
itors, ACM CCS 2019, pages 633-650. ACM Press, Novem-

ber 2019.

Ruiyu Zhu and Yan Huang. JIMU: Faster LEGO-based
secure computation using additive homomorphic hashes.
In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part Il, volume 10625 of LNCS, pages 529—
572. Springer, Cham, December 2017.

[ZH17]

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves
make a whole - reducing data transfer in garbled circuits
using half gates. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part I, volume 9057 of LNCS,

pages 220-250. Springer, Berlin, Heidelberg, April 2015.

Appendix A.
Separating sequencing and execution
in privacy preserving blockchains

Privacy-preserving blockchains bring an innovative
edge by enabling the processing of encrypted data while
selectively decrypting ciphertexts when dictated by the
transaction logic. This includes the ability to re-encrypt
data toward a user-owned key, ensuring that only the
intended recipient can access sensitive information.

However, this powerful capability introduces a criti-
cal challenge to validators. In blockchains like Ethereum,
validators maintain the integrity of the network by pro-
ducing canonical blocks—-those that accurately record
state changes from one block to the next. Without the
ability to decrypt or re-encrypt, validators in a privacy-
preserving blockchain lose this essential function.

On the flip side, granting validators (collectively) de-
cryption powers introduces a significant risk of privacy
leakage. Validators could irreversibly decrypt sensitive
transaction data before it is confirmed as part of a fi-
nalized block. This could expose confidential information
from transactions that ultimately never make it into the
canonical chain, compromising the privacy guarantees
that the blockchain aims to uphold.

To address this, the gcVM introduces an innovative
safeguard: non-canonical blocks must achieve finality
before they are handed over to the execution sub-
network. Only at this stage does decryption become
permissible, ensuring that sensitive data is accessed only
when its integrity and inclusion in the blockchain are
fully confirmed.

This approach strikes a delicate balance between
preserving user privacy and maintaining the network’s
integrity, setting a new standard for privacy-focused
blockchain solutions.

Appendix B.
llustration of soldering

In Figure 6 we present the basic functionality of a
token transfer in the confidential ERC20 standard. The
functionality is given the sender’s and receiver’s balances
balancey and balanceg as well as the amount to be
transferred from A to B. The functionality first verifies
that balancey > amount, and if successful, it transfers
the amount, by decreasing balances and increasing
balanceg by amount.

uint64 uint64 uint64
balanceA | amount | balanceB

TRANSFER

Boolean success = False

If balanceA »>= amount:
balanceA -= amount
balanceB += amount //ignere overflow
success = True

Boolean
success

uint64
balanceA

uint64
balanceB

Figure 6. The Confidential ERC20 transfer functionality.

When done in secure computation, we do not wish to
leak to everyone whether balances > amount, therefore,
both paths are executed, and the balances are updated
according to the comparison result, using the MUX oper-
ation.

When executed in the gcVM, the evaluators hold
garbled circuits for operations GTE, ADD, SUB and MUX,
and they wish to pass values from the output of one
circuit to the next; see Figure 7. In the online soldering
technique, the evaluator conduct the soldering protocol
between execution of every two circuits, whereas in the
offline soldering technique they conduct the soldering
protocol for all circuits at once, before evaluation begins,
and then evaluate all circuits as if they were one big
circuit.

uint64 uint64 uint64
balanceA | amount | balanceB

GTE ADD/SUB

balanceA >= amount balanceA’ -= amount
balanceB’ += amount
Boolean
success uint6d uint64
balanceA” | balanceB’

MU
balanceA, balanceB =
balanceA’ ,balanceB’ if success=1
balanceA,balanceB if success=@

uint64 uint64
balanceA | balanceB

Boolean
success

Figure 7. Confidential ERC20 transfer via soldering. CERC20 incurs
three Onboard operations, to decrypt ciphertexts balanceA, amount,
balanceB, one Transfer operation that performs the calculation insider
the green boxes, and two 0ffboard operations to encrypt the updated
balanceA, balanceB.

https://github.com/zama-ai/fhevm
https://github.com/zama-ai/fhevm

Appendix C.
Bit Authentication via Information
theoretic MAC

Consider a scenario in which a dealer D gives a bit
b to a receiver R (‘sending phase’), who later wants
to prove to a verifier V that b is indeed the bit sent
from D (‘validating phase’). This can be easily solved
by having O sending a digital signature on b which can
be transferred to V at the validation phase. However, this
can be done more efficiently if we allow some interaction
between D and V in the sending phase. Specifically,
we can use an information theoretic MAC (IT-MAC) as
follows:

o Setup: D and V agree on a global random IT-MAC
key K.
« Sending phase:
- D picks a random one-time pad P[b] and com-
putes M[b] =P[b] ®b - K.
- D sends P[b] to V and (b, M[b]) to R.
« Validating phase:

- R sends M[b] to V.

- V learns the bit b € {0,1} for which P[b] =
M[b] ® b - K (i.e., it computes both cases and
checks which one holds). If this is not the case
for neither b = 0 nor b = 1 then V rejects and
aborts.

Since K is unknown to R and a new pad P[b] is used
each time a bit should be authenticated, the MAC value
M{[b] does not leak information about K. Similarly, P[b]
is a random value independent of b, therefore, b remains
secret to V.

IT-MAC is XOR-homomorphic.

« Given pads P[b],P[c] to V and MACs M[b], M|c]
to R, V can receive and validate the authenticity of
d = b @ c without learning b or c individually. This
can be done by having R send M[d] = M[b] & M]|c]
to V, who checks if P[b]®P|[c] = M[d]®K for some
d e {0,1}.

« Given an authenticated bit b (i.e., R has (b, M[b])
and V has P[b]), it is possible to obtain the au-
thenticated bit ¢ where ¢ = b @ a for some public
bit a € {0,1} without interaction:

- If a = 0, then ¢ = b and so everything remains
the same, i.e., authentication of ¢ is equal the
authentication of b.

- If a =1, then ¢ = b® 1. It is simply done by
having V compute P[c] = P[b] ®1-K and R
leave M[c] = M[b]. MAC verification go through
because P[c] = P[b] ® K = M[b]®b -K®K =
M[bl® (b®1)-K=M[b] ®c-K as required.

In our 2-evaluators protocol. In the context of our
protocol, evaluators E; and E, are associated with global
MAC keys K and K;. The dealer is the garbler and each
evaluator plays both as a receiver and a validator.

	Introduction
	Existing Approaches & Limitations
	Our Contributions
	Other Related Work

	Technical Overview and Threat Model
	Architecture Overview
	The gcVM's threat model
	Key concepts of the MPC protocol

	Cryptographic Building Blocks
	Garbling
	Setup Functionalities

	Our Main Protocol
	Opcodes & Transactions
	The Ideal Functionality
	Protocol Intuition & Concepts
	Protocol Description

	Security Analysis
	Geth Integration & PoC Evaluation.
	References
	Appendix A: Separating sequencing and execution in privacy preserving blockchains
	Appendix B: Illustration of soldering
	Appendix C: Bit Authentication via Information theoretic MAC

