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Abstract—Blockchains have achieved substantial
progress in scalability and fault tolerance, yet
confidentiality remains an important challenge.
Existing zero-knowledge (ZK) solutions provide partial
privacy guarantees but have poor performance and
composability, especially for computations involving
the private state of many participants. In this work,
we introduce gcVM, a novel extension to the Ethereum
Virtual Machine (EVM) that integrates garbled-circuit-
based secure multi-party computation to enable
general-purpose, privacy-preserving computation on-
chain. gcVM allows transactional interactions between
untrusted parties, balancing the transparency of
public blockchains with strong confidentiality. Our
implementation demonstrates up to 83 confidential
transactions per second (cTPS) on standard cloud
instances, with projected enhancements expected to
scale throughput to approximately 500 cTPS—two to
three orders of magnitude faster than comparable
FHE-based solutions. gcVM is compatible with existing
EVM tooling, provides public auditability, and requires
no trusted hardware, offering a practical and efficient
platform for privacy-centric blockchain applications
across finance, governance, and decentralized services.

1 Introduction

Blockchains, the Ethereum Virtual Machine, and
the problem of confidentiality. Blockchains were

originally designed to prioritize availability and trans-

parency, with significant progress made in scalability

through innovations like rollups and advancements in

Byzantine Fault Tolerance (BFT) protocols.

Our focus on this work is the Ethereum Virtual Ma-

chine (EVM). Unlike Bitcoin, the EVM provides a Turing

complete, stateful execution environment that enables

complex programmable interactions between users and

smart contracts. This expressiveness makes the EVM

the natural setting for exploring advanced cryptographic

techniques that go beyond payment anonymity, such as

privacy-preserving computation, anonymous credentials,

and secure state updates.

An important fact about EVM for our purposes is

that the entire state of all smart contracts (including

financial and social information) is public. On the one

hand, this fact played a key role in contributing to the

decentralization of Ethereum (who is the first to deploy

an EVM), as it allows anyone to contribute computa-

tional resources and to verify that the EVM state is

the correct result of past transactions. On the other

hand, the lack of confidentiality presents a barrier to the

deployment of many useful applications of blockchain

technology. For example, elections, sealed-bid auctions,

lending/borrowing, deposit management, and OTC mar-

kets all involve information that must crucially remain

confidential.

1.1. Existing Approaches & Limitations

Several cryptographic technologies have been pro-

posed to address the challenge of confidentiality for

blockchains.

Zero-knowledge proofs (ZK). ZK-based systems

achieve privacy by committing to data on-chain and

proving correctness without revealing the underlying

inputs. This technique is highly efficient and provides

public verifiability and succinctness, but its main draw-

backs are that:

• The prover must know all inputs in plaintext, so the

technique is limited to computations that involve

private inputs from just one party. This makes it

difficult for different smart contracts to interact.

• They typically rely on a trusted setup.

For example: ZCash [BCG
+
14] and Monero [Mon23] use

zk-SNARKs and ring signatures, respectively, to provide

transactional anonymity but lack general smart-contract

capability. Zexe [BCG
+
20] and VeriZexe [XCZ

+
23] ex-

tend this paradigm to decentralized private compu-

tation (DPC), supporting off-chain computation with

succinct on-chain proofs. Hawk [KMS
+
16] introduces

privacy-preserving contracts via a trusted manager,

later replaced by MPC in zkHawk [BCT21] and V-

zkHawk [BT22].

Fully homomorphic encryption (FHE). FHE-

based [Gen09] solutions allow parties to carry out

arbitrary computations on encrypted data. Exam-

ples in the blockchain space include fheVM [Zam],

Zether [BAZB20], Zkay [SBG
+
19], SmartFHE [SWA23],

and PESCA [Dai22]. FHE offers strong theoretical guar-

antees, but suffers from several limitations:

• Even with significant engineering improvements,

FHE is slow. For example, fheVM supports roughly

2–3 confidential transactions per second on AWS’s



most powerful instances.
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• FHE-based solutions generally do not provide cryp-

tographic agility, which is defined as the ability to

easily replace cryptographic components if some

are found to have weaknesses. FHE solutions and

their correpsonding optimizations are intrinsically

tied to a highly specific choice of cryptographic

algorithm, at a specific security level. For example,

fhEVM is based on the TFHE construction.

Trusted execution environments (TEE). TEE-based

systems perform computation within secure enclaves

that hold decryption keys, storing only encrypted

data on-chain. Examples include Oasis [Fou23] and

Phala [Net23]. Unlike cryptographic solutions, TEEs have

almost no computational overhead. However,

• Trust in hardware is riskier than trust in cryptogra-

phy. All known TEEs are vulnerable to side-channel

attacks (SCAs).

• If secrets are stored in a single TEE, there is a single

point of failure for availability. If secrets are stored

in several TEEs, there are many points of failure for

privacy.

Secure multiparty computation (MPC). MPC-based

systems enable multiple parties to jointly compute con-

tract logic over private data, via an interactive protocol.

Solutions like zkHawk [BCT21] and V-zkHawk [BT22]

eliminate the trusted manager in Hawk by using MPC

protocols. Eagle [ByCDF23] further adds identifiable

abort and public verifiability These approaches provide

strong privacy even under dishonest-majority settings

and are well-suited for decentralized input ownership.

However, all previous approaches use secret-sharing-

based MPC techniques, which have certain limitations.

• They require many sequential rounds of computa-

tion (proportional to the circuit-depth of the com-

putation). This results in high latency for deep com-

putations, as well as challenges inherent in having

many protocol synchronization points.

• Existing MPC-based solutions have their network

structure “baked in,” meaning that clients must

know the identities of the computing nodes.

1.2. Our Contributions

In this work, we introduce gcVM, a novel exten-

sion to the Ethereum Virtual Machine (EVM) that adds

the ability to store private data on-chain and enable

privacy-preserving smart contracts. gcVM is the first

such system based on garbled circuits [BHR12], a classic

technique from secure multi-party computation.

The current stable version of the gcVM has been

deployed on a public Testnet and is scheduled for Main-

net deployment following a security audit and an ex-

pansion of the MPC node network. Even without some

of the optimizations introduced in this work, the sys-

tem demonstrates notable performance, achieving up

1. Based on numbers provided in https://docs.zama.org/tfhe-rs/

get-started/benchmarks/cpu/cpu-integer-operations, assuming a mod-

est transaction involving the following atomic operations: Comparison,

for comparing the payer’s balance with the payout amount; addition,

to increase the payee’s balance; subtraction, to decrease the payer’s

balance; and a ZKPoK verification to authenticate the payer.

to 83 confidential transactions per second (cTPS) on

basic Amazon EC2 instances under moderate bandwidth

conditions using single-threaded MPC nodes. This result

indicates substantial room for further performance gains.

Notably, one major enhancement described in this work,

referred to as “offline soldering,” is expected to scale

the gcVM to approximately 500 cTPS, with additional

improvements such as parallel evaluation projected to

increase throughput even further. For context, a compa-

rable commercial system based on Fully Homomorphic

Encryption (FHE) achieves only 2–3 cTPS on Amazon’s

most powerful machines, implying that gcVM can offer

two to three orders of magnitude higher performance in

similar environments.

Our approach enjoys the following features:

Modularity. Our garbled-circuit-based solution con-

sists of two distinct and independent phases. The Gar-

bling phase involves significant computation by the net-

work nodes (the ‘garblers’) and is conducted offline in a

pre-processing stage, producing a garbled circuit—a se-

cure one-time container for data processing. This phase

continually generates garbled circuits for subsequent use

during the Evaluation phase, where actual transactions

are processed. The Evaluation phase is executed by the

network nodes in an efficient manner. The Garbling

phase can be instantiated in a variety of ways, leading

to a modular ’privacy supply chain’ that the Evaluation

phase can consume.

Security and Cryptographic Agility. One design

principle behind gcVM is to align with industry crypto-

graphic standards right from the start, rather than intro-

ducing a proprietary, yet-to-be-standardized encryption

and zero-knowledge schemes. In gcVM, private transac-

tion data can be encrypted by any standard, symmetric-

key encryption scheme (e.g., AES-GCM). Thus, we in-

herit the high assurance that these heavily scrutinized

algorithms have enjoyed. Our approach is relatively ag-

nostic to the specific choice of encryption. Instantiations

are available in many key lengths and block lengths,

positioning them as post-quantum ready.

Apart from conventional, off-the-shelf encryption

schemes, the gcVM requires only an abstract garbling

scheme [BHR12], which in turn can be instantiated

from any standard block cipher (e.g., AES-128). An ad-

vantage of encrypting transaction data using standard

symmetric-key encryption is that it is relatively practical

to incorporate encryption/decryption logic within a gar-

bled circuit (because standard symmetric-key algorithms

have relatively small boolean circuits).

Arbitrary transaction logic. By using general-

purpose MPC techniques, applied to data encrypted with

conventional symmetric-key techniques, our approach

can handle computations over private data of any users.

Unlike ZK-based approaches, there is no requirement

that a prover knows all of the private data for a single

transaction. This feature is vital for a range of blockchain

applications, from dynamic identity systems and DeFi

applications like AMM to portfolio management, social

trading, auctions, governance, and more.

Public auditability. A special requirement that

may be crucial in many settings is ensuring that com-

putations—even on ciphertexts—are publicly auditable,

thereby mitigating the risk of manipulation or theft

https://docs.zama.org/tfhe-rs/get-started/benchmarks/cpu/cpu-integer-operations
https://docs.zama.org/tfhe-rs/get-started/benchmarks/cpu/cpu-integer-operations


through ‘silent collusion’ among all parties. In practical

terms, any state-transition is deemed invalid if it fails

public audit. Garbled circuits pose a natural candidate

to satisfy that requirement, as the garbled circuits them-

selves are public, and it only remains for the auditor to

ensure that garbled inputs are obtained correctly.

Performance. We achieve high performance by sep-

arating the steps involved in garbled-circuit-based MPC

into two phases. Garblers continuously produce a sup-

ply of garbled circuits for a selection of atomic op-

erations (e.g., ADD64, MULT64, LEQ). This is the offline

garbling phase. Then, when a transaction arrives, eval-

uators quickly assemble these already-garbled circuits

together into one unified circuit representing the entire

transaction. In this way, we maximize the amount of

effort that can be done before the transaction is known.

Only the garbled evaluation needs to happen at the

time of a transaction. Both the evaluation step and

the “stitching” (soldering) steps require a small constant

number of communication rounds among nodes, which

does not depend on the number of parties involved or

the complexity of the transaction.

User and developer experience. Users interact

with the gcVM system in an extremely simple way.

Private data is provided by simply encrypting it under

a standard symmetric-key scheme (e.g., AES-GCM) and

sending the resulting ciphertext to the network. Trans-

actions then simply refer to [the contents of] these

ciphertexts. All other cryptography (i.e., the garbled cir-

cuits and other primitives) is handled exclusively by the

network nodes.

As a result, a gcVM client can be implemented using

only cryptography that is included in openssl. This

makes seamless deployment possible on a wider range of

devices and platforms. As a point of comparison, clients

in fhEVM must compute and send a zero-knowledge

proof of knowledge.

Additionally, gcVM is built on EVM, the most popular

environment for smart contracts. We can therefore take

advantage of all the existing tooling and workflows

for EVM contracts. The vast majority of FHE-based

solutions, for example, rely on alternative, proprietary

execution environments [Par21], [Sec], [Oas].

1.3. Other Related Work

Public verifiability / covert security in MPC. The

notion of public verifiability and covert security in se-

cure multi-party computation (MPC) has been stud-

ied extensively in recent years. Damgård, Orlandi, and

Simkin [DOS20] introduced a general transformation

from arbitrary passively secure preprocessing protocols

into protocols that achieve covert security with pub-

lic verifiability, while maintaining the same corruption

threshold. Their construction employs time-lock puzzles

to enable delayed opening of protocol commitments,

thereby allowing external verification of protocol cor-

rectness. Although their primary focus is on the two-

party setting, they also outline how their approach can

be extended to multi-party computation. Following this

line of work, Fischlin et al. [FHKS21] presented a generic

compiler that converts covertly secure MPC protocols

into publicly verifiable ones. Their compiler leverages

time-lock encryption to ensure that the probability of

detecting cheating (often referred to as the deterrence

factor) remains high and independent of the number of

participating parties.

A related strand of research studies publicly

verifiable two-party computation (2PC). Works such

as [KM15], [HKK
+
19], [ZDH19], [DOS20] propose pub-

licly checkable cut-and-choose techniques for 2PC based

on garbled circuits, enabling third parties to verify cor-

rectness without compromising privacy.

Beyond covert and two-party settings, several works

have explored auditable and publicly verifiable MPC.
Public verifiability, as introduced in [BDO14], [SV15],

allows any external observer to verify the correctness

of outputs based solely on publicly available data, such

as values posted to a public bulletin board. Baum et

al. [BDO14] and Schoenmakers and Veeningen [SV15]

developed frameworks for publicly auditable MPC, high-

lighting the importance of external accountability in

distributed computation. More recently, Baum, Orlandi,

Scholl, and Simkin [BOSS20] presented the first con-

cretely efficient, constant-round MPC protocols achiev-

ing identifiable abort and public verifiability in the

dishonest-majority setting. Their protocols assume static

corruptions and rely on broadcast and bulletin board

functionalities. In both the identifiable abort and publicly

verifiable variants, their constructions achieve constant-

round communication, counting broadcast or bulletin-

board access as a single round.

Related work on garbling. The garbled circuits

technique was first proposed by Yao [Yao86] and later

formalized by Lindell and Pinkas [LP09] and Bellare,

Hoang and Rogaway [BHR12]. We use a technique called

soldering, whereby components are garbled before the

final circuit (transaction) is known, and then later as-

sembled into a unified garbled circuit. The technique was

pioneered by Nielsen and Orlandi [NO09] and refined in

a series of works [FJN
+
13], [FJNT15], [KNR

+
17], [ZH17].

Paper structure. We provide an overview of the net-

work architecture, the threat model, and the technical

concepts behind the garbled circuit-based MPC frame-

work in Section 2; we provide a formal treatment of

the MPC framework and a security analysis in Sections

3-4 and 5, respectively; and finally report about the

current integration with the go-ethereum client and the

performance of the network in Section 6.

2 Technical Overview and Threat
Model

2.1. Architecture Overview

The network is depicted in Figure 1. Transactions

originate from clients (aka EOAs) and pass through the

sequencing sub-network, which produces a non-canonical
block (appears in red). A non-canonical block is simply a

container of transactions intended to be used internally

only and does not change the blockchain’s state. Trans-

actions in that block only pass through basic validation

like signature verification, gas consumption limit, etc.



The non-canonical block is then passed to the execu-
tion sub-network, which iterates over the transactions

in the non-canonical block, executes them one-by-one,

and produces a canonical block. The canonical block

is then published and declared as the new blockchain

‘head’, and contains claims about the changes in the

blockchain’s state. The execution sub-network is com-

posed of the usual EVM execution engine as well as

an integration with garbled circuits evaluator nodes

to handle privacy preserving computation workloads.

These evaluator nodes continuously receive garbled cir-

cuit materials from the garblers. Separating sequencing

from execution is inherent to privacy-preserving chains,

which stems from a ‘chicken-and-the-egg’ problem, as

explained in Appendix A.

Figure 1. High-level architecture of the gcVM Network.

The gcVM extends the instruction set of the EVM

with an analogous set of instructions for secure compu-

tation. These instructions receive encryptions as input

and produce an encryption as an output, namely, an

instruction for securely computing the function 𝑦 =

𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) receives 𝑛 ciphertexts ct1, . . . , ct𝑛 and

outputs a ciphertext ct𝑦 , s.t. decryption of ct𝑦 is equal

𝑓 (pt1, . . . , pt𝑛) where pt𝑖 is the decryption of ct𝑖 . To
achieve that without having to trust any single party,

the execution sub-network runs an MPC protocol that

ensures that plaintexts are not revealed (unless this was

the intention of the client).

The evaluation nodes collectively manage one global

symmetric encryption ‘network key’ and one symmetric

encryption ‘user key’ per user (EOA), such that all keys

are secret shared among themselves. The user key is

distributively generated on demand by the evaluation

nodes, upon a user-onboard transaction. The network

key is used to encrypt the blockchain’s private shared

state whereas the user key is used to bring in new

arguments to the gcVM and to return results to specific

users, according to the smart contract logic.

Users can bring in new ciphertexts as well as invoke

confidential computing on existing ones by sending a

transaction to the gcVM. The lifetime of a transaction

involves handling different forms of encrypted values, as

depicted in Figure 2 and explained below.

A client can send a transaction that potentially

contains encrypted arguments. Such argument is en-

crypted using the client’s symmetric encryption key,

and is individually signed. The signature is applied to

the encryption as well as other metadata, consisting of

the destination contract and method. This facilitates a

protection against ciphertext theft attacks by ensuring

that only the destination contract and method may

process that ciphertext. Collectively, the ciphertext and

the signature are referred to as ‘input-text’.

At execution time, each input-text’s authenticity is

first validated, meaning that the gcVM verifies that the

input-text is signed by the same transaction sender’s

signing key, and the current contract and method match

those it signed on. The transaction reverts if that vali-

dation fails.

After validation, the ciphertext is passed through a

decryption garbled circuit, which results in a garbled-

text. That circuit is given as inputs the ciphertext and

the appropriate user symmetric key, and performs the

decryption operation. To that end, both the ciphertext

and the user symmetric key are transformed, by the

evaluator MPC nodes, into labels that suit the decryp-

tion garbled circuit. This is done in a sub-protocol that

resembles an oblivious transfer (OT), except that here

the evaluators simulate both the sender and the receiver.

At the end of that sub-protocol, the evaluators have a

single label for each input wire of the decryption garbled

circuit, and are ready to locally evaluate.

Note that the plaintext encrypted under the input-

text and the garbled-text is the same, except that

garbled-text encryption format makes the encrypted

data amenable for secure computation by subsequent

garbled circuits. The garble-text represents a plaintext

by a set of wire labels, in a way that the labels do not

disclose anything about that plaintext.

The required computation, which is specified by the

contract’s logic, is conducted inside an environment

called ‘Garbled Execution Environment’ (GEE), which en-

sures that private data cannot leak from one transaction

execution sandbox to another. The GEE can ensure such

isolation thanks to the unpredictability of garbled-texts;

that is, the fact that as long as the labels for the input

wires of a garbled circuit are not disclosed, the labels for

its output wires are unknown too. Therefore, one cannot

‘inject’ a valid garbled-text to the execution of the GEE.

When execution is completed, depending on the con-

tract logic, it can either decrypt a garbled-text, encrypt

it to a certain user (EOA) or to the network. While

decrypting a garbled-text only requires revealing the true

meaning of the labels obtained for the output wires,

encrypting it to a user or the network requires passing

that garbled-text through an encryption garbled circuit

(with the user’s or the network’s key, respectively). If

encrypted to the network, that data joins the private

shared state and can be reused in future transactions,

in case that contract is being called again.



Figure 2. Transaction flow in the gcVM.

2.2. The gcVM’s threat model

In the heart of our MPC protocol lies a garbling
scheme. With great simplicity, this is a cryptographic

scheme that is given a boolean circuit 𝑓 2, and outputs

a tuple 𝐹, 𝑒, 𝑑 where 𝐹 is the ‘garbled’ version of 𝑓 , the

encoding 𝑒 maps input wire 𝑤𝑖 to two possible labels

𝐿𝑖,0 and 𝐿𝑖,1 representing the bits 0 and 1; similarly, the

decoding 𝑑 maps the labels 𝐿𝑗,0 and 𝐿 𝑗,1 to the bits 0 and

1, for every output wire 𝑤 𝑗 . In an analogy to 𝑓 , which

carries one out of two bits over each of its wires, 𝐹 carries

one out of two possible labels over each wire. Correctness
of a garbling scheme requires 𝐹 to ‘mimic’ 𝑓 ; that is, if 𝑓

has 𝑛 and𝑚 input and output wires (resp.), evaluating 𝐹

on labels 𝐿1,𝑏1 , . . . , 𝐿𝑛,𝑏𝑛 (one label per input wire) results

in labels 𝐿1,𝑏′1 , . . . , 𝐿𝑚,𝑏′𝑚 (one label per output wire) s.t.

𝑓 (𝑏1, . . . , 𝑏𝑛) = (𝑏′1, . . . , 𝑏′𝑚). Privacy of a garbling scheme

requires that the labels used in the evaluation of 𝐹 do

not leak the bits they represent.

A typical garbled circuit-based secure computation

protocol consists of one garbler and one evaluator. Given

a circuit 𝑓 , the garbler produces a suitable (𝐹, 𝑒, 𝑑) as
above, and hands the evaluator 𝐹 and 𝑑 , as well as one

label per input wire, that is, the label that represents the

actual input bit.
3

In our setting, we abstract out the two roles and end

up with a set of garblers 𝐺 and a set of evaluators 𝐸,

where 1 ⩽ |𝐺 | and 2 ⩽ |𝐸 |. Similarly, we define two

threshold parameters 0 ⩽ 𝑡𝐺 < |𝐺 | and 0 ⩽ 𝑡𝐸 < |𝐺 | that
specify the maximal number of garblers and evaluators

that the adversary is assumed to corrupt. With that

abstraction we can achieve the following guarantees:

• Privacy holds as long as the adversary corrupts less

than 𝑡𝐸 evaluators and less than 𝑡𝐺 garblers.

• Public auditability guarantees that correctness al-
ways holds, even when all parties collude.

The latter property is crucial for a blockchain-based

solution, as the computation is typically delegated to a

set of nodes as a service. Public auditability enables 3rd

parties to make sure that, even in extreme cases where

2. We focus on boolean circuits here but the same holds for arith-

metic circuits.

3. When this bit is a private input to the evaluator, an oblivious

transfer (OT) protocol enables the evaluator to obtain the appropriate

label without disclosing to the garbler the actual input bit.

privacy breaks, that service could not steal funds from

its users.

The new threat model provides more flexibility in

deployments. The idea is that the garblers can, in prin-

ciple, use a one-directional communication channel to

the internet, thereby significantly reducing their attack

surface. This is because the garblers only need to send

out the garbled circuits they produce, without receiving

any input from the evaluators (recall that the evaluators

simulate the OT protocol among themselves).

2.3. Key concepts of the MPC protocol

The above allows for various possible instantiations

of a GC-based MPC protocol, depending on the number

of garblers, evaluators, and the threshold parameters. In

the following we list the key concepts that are common

to most settings.

Transaction-independent garbling via online and
offline soldering. In contrast to the two-party protocol

described above, in our setting where 2 ⩽ |𝐸 |, the

garblers’ work is completely independent of the online
computation – the tuple (𝐹, 𝑒, 𝑑) is produced and handed

over to the evaluators such that 𝐹 is handed in the clear

whereas 𝑒 and 𝑑 are secret shared among them. This

way the evaluators do not need to interact with the

garbler(s) anymore and can simulate the OT protocol

among themselves (in order to obtain the correct label

for each input wire of 𝐹 ). That is, the two labels 𝐿𝑖,0 and
𝐿𝑖,1 for every input (and output) wire 𝑤𝑖 are secretly

shared between evaluators. When it is time to evaluate

that circuit, the evaluators conduct a lightweight 2-

rounds protocol in which they obtain 𝐿𝑖,𝑏𝑖 , where 𝑏𝑖 is

the real input bit to enter 𝑤𝑖 . The evaluators can do that

even when 𝑏𝑖 is held in a secret shared form.

To enable meaningful computation by the evalua-

tors, the garbler(s) continuously produce garbled cir-

cuits for each of the EVM’s instructions (ADD64, MUL64,
EQ64, etc.) and hand them over to the evaluators, as de-

scribed above. Upon receiving a transaction, described as

a sequence of EVM instructions, the evaluators consume

the precomputed garbled circuits. However, in order to

pass value from the output wire 𝑤𝑖 of one circuit to the

input wire 𝑤 𝑗 of the subsequent circuit, the evaluators



conduct an online soldering protocol. That is, this enables

the evaluators to translate label 𝐿𝑖,𝑏𝑖 obtained on output

wire 𝑤𝑖 to label 𝐿 𝑗,𝑏 𝑗
on input wire 𝑤 𝑗 , such that 𝑏𝑖 = 𝑏 𝑗 .

Note that 𝐿𝑖,𝑏𝑖 and 𝐿 𝑗,𝑏 𝑗
encode the same value 𝑏 and

so the computation continues as if both garbled circuits

were connected in the first place.

The online soldering incurs communication rounds

between the execution of different circuits. An optimized

version, we call offline soldering, performs all needed

soldering in one shot, thereby, spending a fixed number

of communication rounds to solder many circuits at the

same time instead of per circuit, which accounts to a

huge performance improvement as the whole transac-

tion (or even the whole block) can be securely computed

following a fixed number of communication rounds. See

Appendix B for an illustration.

Encryption scheme and key-management. The sys-

tem relies on symmetric key encryption for secrecy (and

on digital signatures for authenticity). That means that

the network maintains a secret key 𝑘𝑁 as well as a

secret key 𝑘𝑈 per user 𝑈 , where each key is secret

shared among the evaluators. To input an encrypted

argument ct = Enc(𝑘𝑈 ,𝑚), the user 𝑈 associates a

signature 𝜎 on ct and some metadata that specifies the

exact contract and method to which this argument is

intended (to prevent a ‘ciphertext theft’). Then, when

executed, the signature is verified against the sender’s

public key as well as the contract and method being

executed, and then ct and 𝑘𝑈 are entered as inputs to

a garbled circuit for ‘secure decryption’; meaning that

the result of the decryption 𝑚 = Dec(𝑘𝑈 , ct) remains in

labels format, also called ‘garbled-text’. This garbled-text

is readily available to be soldered to other garbled circuit

for further computation.

Public auditability. For public auditability, the protocol
has to ensure the following:

1) The garbled circuits produced by the garbler(s) are

correct, namely, they compute the intended func-

tion and nothing else.

2) Given correct garbled circuits, the evaluators eval-

uate them correctly. That is, they reveal and use

the correct labels for all input wires of the gabrbled

circuits they evaluate.

We now explain how the above items are addressed:

1) The first requirement can be satisfied cryptograph-

ically by a cut-and-choose-based protocol [KM15],

[HKK
+
19], [ZDH19], [DOS20], where some of the

produced garbled circuits are completely revealed

for verification, and the rest are used for actual

computation. In our setting the cut-and-choose

overhead can be significantly reduced, taking into

account that (i) this is a repeating rather than a one-

time game, a setting not yet addressed in previous

works [KM15], [HKK
+
19], [ZDH19], [DOS20] and

left for future work; (ii) in our context, an incor-

rect garbled circuit can be reported and verified

on-chain (in a technique similar to Arbitrum’s bi-

section-based fraud-proof algorithm [Arb23]). This

means that an arbitrator smart contract will need

to verify the correctness of a single garbled gate,

incurring a constant on-chain cost. If the arbitrator

smart contract indeed finds an incorrect garbled

gate then the garbler(s) will be slashed. Alterna-

tively, the garbling itself can be computed using

a publicly auditable protocol, for which there are

various approaches [BDO14], [SV15]. In the case

of |𝐺 | = 1, this can be done with a simple zero-

knowledge proof that the produced circuit was

computed correctly [ASH
+
20]. To satisfy a greater

throughput demands, multiple garbling committees

can be formed such that each committee works

independently.

As a second non-cryptographic alternative, gar-

bler(s) can run inside a TEE, and so even a leak of

the hardware secret keys will not cause an incorrect

garbled circuits.

In reality, both methods can be combined in order

to achieve two layers of security.

2) Let us address the second requirement. A useful

property of garbled circuits is that, given the input

wires’ labels used to evaluate a garbled circuit,

anyone will obtain the exact same labels on the

output wires. These labels do not reveal anything to

a 3rd party auditor (from the privacy guaranteed by

the garbling scheme), meaning that if the labels on

the input wires are correct, anyone can verify the

resulting labels on the output wires, as reported by

the evaluators.

It remains to make sure that the translation from

inputs to labels, as well as the soldering (which

translates from labels to labels) is publicly verifiable.

This is done via a novel technique that utilizes

homomorphic commitments applied by the garbler

to the permutation bits of the input and output

wires’ labels of every garbled circuit.

Publicly auditable soldering is achieved by extend-

ing the garbling scheme to contain more informa-

tion about the labels. The following explanation

builds on the Half-Gates garbling scheme [ZRE15],

but can be extended to any garbling scheme, as

discussed later.

In the Half-Gates garbling scheme each in-

put/output wire 𝑤𝑖 is associated with two labels

𝐿0𝑖 and 𝐿1𝑖 with signal bit (their lsb) being 0 and

1 respectively. The signal bit does not leak infor-

mation about the real bit that the label represents;

rather, the real bit is dictated by a random per-

mutation bit 𝑝𝑖 that is also associated with the

wire: if 𝑝𝑖 = 0 then 𝐿0𝑖 and 𝐿1𝑖 represent 0 and

1 (respectively), otherwise (if 𝑝𝑖 = 1) then they

represent 1 and 0 (respectively). In our protocol, all

labels and permutation bits are secret shared by the

evaluators and only one label per wire is revealed

right before evaluation. In addition, we extend the

garbling scheme so the evaluators also obtain (from

the garbler(s)) a commitment to the permutation

bit 𝑝𝑖 , denoted 𝑐𝑖 = Com(𝑝𝑖 ; 𝑟𝑖 ) as well as a secret

sharing to the decommitment 𝑟𝑖 , where Com is an

additively homomorphic commitment. The evalua-

tors also obtain a single global commitment to the

value 1, namely 𝑐∗ = Com(1; 𝑟 ∗).
Now, suppose that the evaluators want to connect

the output wire 𝑤𝑖 of one circuit, to the input wire

𝑤 𝑗 of another circuit. The evaluators first reveal



𝑝𝑖 𝑗 = 𝑝𝑖 ⊕ 𝑝 𝑗 ; this tells them whether the permu-

tation bits are the same (i.e., 𝑝𝑖 𝑗 = 0) or not (i.e.,

𝑝𝑖 𝑗 = 1). The evaluators do as follows:

• Case 𝑝𝑖 𝑗 = 0. The evaluators need to reveal the

map {𝐿0𝑖 → 𝐿0𝑗 , 𝐿
1
𝑖 → 𝐿1𝑗 } and so they reveal the

soldering information 𝛿𝑖 𝑗,0 = 𝐿0𝑖 ⊕ 𝐿0𝑗 and 𝛿𝑖 𝑗,1 =

𝐿1𝑖 ⊕ 𝐿1𝑗 .
• Case 𝑝𝑖 𝑗 = 1. The evaluators need to reveal the

map {𝐿0𝑖 → 𝐿1𝑗 , 𝐿
1
𝑖 → 𝐿0𝑗 } and so they reveal the

soldering information 𝛿𝑖 𝑗,0 = 𝐿0𝑖 ⊕ 𝐿1𝑗 and 𝛿𝑖 𝑗,1 =

𝐿1𝑖 ⊕ 𝐿0𝑗 .
When it is time to evaluate a complex set of garbled

circuits, in which output wire 𝑤𝑖 is connected to

input wire 𝑤 𝑗 , the evaluators first obtain the active

label on 𝑤𝑖 , say 𝐿𝑏𝑖 (for some 𝑏 ∈ {0, 1}) and

translate it to the appropriate active label on 𝑤 𝑗 by

locally computing 𝐿𝑏
′
𝑗 = 𝐿𝑏𝑖 ⊕ 𝛿𝑖 𝑗,𝑏 . Note that 𝑏′ = 𝑏

if 𝑝𝑖 𝑗 = 0 and 𝑏′ = 1 − 𝑏 if 𝑝𝑖 𝑗 = 1. Note that given

a label 𝐿𝑏𝑖 , the signal bit 𝑏 is known by lsb(𝐿𝑏𝑖 ).
Therefore, given 𝑝𝑖 𝑗 , a public auditor need only to

make sure that lsb(𝐿𝑏𝑖 ) ⊕ lsb(𝐿𝑏′𝑗 ) = 𝑝𝑖 𝑗 and also

verify that the reported 𝑝𝑖 𝑗 is computed correctly.

To enable auditors making sure that the reported

𝑝𝑖 𝑗 is computed correctly, the evaluators also reveal

the decommitment for a commitment to zero, as

follows:

• Case 𝑝𝑖 𝑗 = 0. Reveal 𝑟𝑖 𝑗 = 𝑟𝑖 −𝑟 𝑗 . Then the auditor

verifies that 𝑟𝑖 𝑗 is indeed a decommitment to 𝑐𝑖 −
𝑐 𝑗 and so this is a commitment to 0.

• Case 𝑝𝑖 𝑗 = 1. Reveal 𝑟𝑖 𝑗 = 𝑟 ∗ − (𝑟𝑖 + 𝑟 𝑗 ). Then the

auditor verifies that 𝑟𝑖 𝑗 is indeed a decommitment

to 𝑐∗ − (𝑐𝑖 + 𝑐 𝑗 ) and so this is a commitment to

0.

In the above, note that commmitment arithmetics

is done over the appropriate module defined by the

commitment scheme.

Optimized soldering. While the above works

well, it may be inefficient in cases the input/output

length is large (e.g., for circuits that operate on

128/256 bit integers). This is because of the reliance

on homomorphic commitment, which are typically

built on public-key primitives (e.g., Pedersen com-

mitment [Ped92]).

In the following we provide a high level description

of a novel publicly auditable optimized soldering

mechanism, that builds on the above principles, but

require much less invocations of the homomorphic

commitment tool. The new mechanism does not

rely on the internal instantiation of the garbling

scheme. Surprisingly, when instantiated with the

Half-Gates (or similar) scheme, it allows a complete

reveal of all permutation bits (even though in a

typical usage of it they serve as key role for privacy).

The new mechanism enhances each circuit with a

‘header’ and ’footer’ sub-circuits. For example, the

circuit that computes MULT256 that takes two 256-

bit integers 𝑎, 𝑏 and returns a 256-bit integer 𝑐 is

enhanced as follows:

• Instead of having only two inputs 𝑎,𝑏, the circuit

now has two additional inputs 𝛿𝑎, 𝛿𝑏 .

• The header sub-circuit is hard-coded with two

random secrets 𝛼𝑎 and 𝛼𝑏 , picked and known only

to the garbler(s).

• The footer sub-circuit is hard-coded with a ran-

dom secret 𝛼𝑐 , picked and known only to the

garbler(s).

The header computes 𝑎∗ = 𝑎 − 𝛼𝑎 + 𝛿𝑎 and 𝑏∗ =

𝑏 −𝛼𝑏 +𝛿𝑏 . Then the circuit computes the intended

operation, in this example, this is 𝑐∗ = 𝑎∗ + 𝑏∗ and
passes the result to the footer, which computes and

outputs 𝑐 = 𝑐∗ + 𝛼𝑐 . Overall, this incurs a circuit

increase by three addition/subtraction.

The idea is that input and output to garbled circuits

are public, but are always masked by a one-time pad

that is unknown to the evaluators. The goal of the

header is to remove that one-time pad in order to

get the plaintext arguments 𝑎∗ and 𝑏∗, and the goal

of the footer is to re-mask the output 𝑐∗, resulting
in 𝑐 .

The one-time pads 𝛼𝑎, 𝛼𝑏, 𝛼𝑐 are secret shared by the

evaluators, which allows them perform the solder-

ing, thereby building a complex garbled circuit out

of many atomic ones. This is done as follows, sup-

pose the output 𝑦∗ of circuit 𝐶1 is to be connected

to the input 𝑥 of another circuit 𝐶2. Recall that 𝐶1
doesn’t output 𝑦∗, rather, it outputs 𝑦 = 𝑦∗ + 𝛼𝑦
where 𝛼𝑦 is random and secret shared. To input 𝑦∗,
the evaluators simply connect the output wires of 𝑦

to the input wires of 𝑥 (this is trivial now because

𝑥,𝑦 and the permutation bits associated with them

are public), and reveal 𝛿𝑥 = 𝛼𝑥 − 𝛼𝑦 , which is also

entered as a public input to 𝐶2. The header of 𝐶2
now computes 𝑥∗ = 𝑥 −𝛼𝑥 + 𝛿𝑥 = 𝑥 −𝛼𝑥 +𝛼𝑥 −𝛼𝑦 =

𝑦∗ + 𝛼𝑦 − 𝛼𝑥 + 𝛼𝑥 − 𝛼𝑦 = 𝑦∗. At this point, the value

𝑥∗ = 𝑦∗ is ready for the actual computation that the

circuit is intended to perform, as required.

To facilitate public auditability of the soldering, the

evaluators are also equipped with additively homo-

morphic commitments to all masking values, as well

as a secret sharing to their decommitments. In the

above example, the evaluators are equipped with

𝑐𝑦 = Com(𝛼𝑦, 𝑟𝑦) and 𝑐𝑥 = Com(𝛼𝑥 , 𝑟𝑥 ) we well as

secret shares of 𝑟𝑦 and 𝑟𝑥 . The evaluators now have

to prove that the revealed 𝛿𝑥 indeed equals 𝛼𝑥 −𝛼𝑦 .
This can be done by revealing 𝑟𝑥 − 𝑟𝑦 , in order for

the auditor to verify that 𝑐𝑥 −𝑐𝑦 = Com(𝛿𝑥 , 𝑟𝑥 −𝑟𝑦).

3 Cryptographic Building Blocks

3.1. Garbling

A garbling scheme consists of the following algo-

rithms: (we slightly modify the standard definitions from

[BHR12])

• Garble(𝑓 ) → (𝐹, 𝑒, 𝑑): on input a circuit 𝑓 , outputs

a garbled circuit 𝐹 , encoding information 𝑒 , and

decoding information 𝑑 .

• Eval(𝐹, 𝑋 ) → 𝑌 : on input a garbled circuit 𝐹 and

garbled input 𝑋 , outputs a garbled output 𝑌 .

We define a “multiplexer” function Encode as follows. If

𝑤 is a 𝑛 × 2 array of wire labels, and 𝑥 ∈ {0, 1}𝑛 , then
Encode(𝑊,𝑥) =

(
𝑊 [1, 𝑥1],𝑊 [2, 𝑥2], . . . ,𝑊 [𝑛, 𝑥𝑛]

)
.



We insist that a garbling scheme is projective for both

garbled inputs and outputs, meaning that 𝑒 and 𝑑 are

such 2D arrays of wire labels. Then a garbling scheme is

correct if, whenever (𝐹, 𝑒, 𝑑) ← Garble(𝑓 ), we have the

following with probability 1:

Eval(𝐹, Encode(𝑒, 𝑥)) = Encode(𝑑, 𝑓 (𝑥))

Adaptive (circuit-)privacy: Intuitively, the view of the

evaluator (garbled circuit plus a garbled input) leaks no

more than the circuit input/output, even when inputs

are chosen after seeing the garbled circuit. In particular,

they leak nothing about the garbler’s choice of circuit

within some class of functions F .
Formally, there is a two-stage simulator (Sim1, Sim2)

such that the following two games are indistinguishable:

receive 𝑓 ∈ F from adversary

(𝐹, 𝑒, 𝑑) ← Garble(𝑓 )
give 𝐹 to adversary

receive 𝑥 from adversary

𝑋 := Encode(𝑒, 𝑥)
give 𝑋 to adversary

receive 𝑓 ∈ F from adversary

(𝐹, 𝜎) ← Sim1 ()
give 𝐹 to adversary

receive 𝑥 from adversary

𝑋 ← Sim2 (𝜎, 𝑥, 𝑓 (𝑥))
give 𝑋 to adversary

Note: the simulator does not get to see the choice of

𝑓 , so the adversary’s view is independent of 𝑓 (except

via 𝑓 (𝑥)) in the game on the right.

Strong (real-or-random) output-label authentic-
ity: When evaluating a garbled circuit, one obtains a

garbled representation of the output 𝑦 with respect to

the output labels 𝑑 , which we write as Encode(𝑑,𝑦).
It should be hard to guess wire labels for the comple-
mentary bits (i.e., those that represent the bits of 𝑦).

We require a strong flavor of this authenticity property,

that the complementary wire labels are indistinguishable

from random. More formally, the following two games

are indistinguishable:

receive 𝑓 from adversary

(𝐹, 𝑒, 𝑑) ← Garble(𝑓 )
give 𝐹 to adversary

receive 𝑥 from adversary

𝑋 := Encode(𝑒, 𝑥)
// real labels encoding
// complementary output:
𝑌̃ := Encode(𝑑, 𝑓 (𝑥))𝑌̃ := Encode(𝑑, 𝑓 (𝑥))
give (𝑋, 𝑌̃ ) to adversary

receive 𝑓 from adversary

(𝐹, 𝑒, 𝑑) ← Garble(𝑓 )
give 𝐹 to adversary

receive 𝑥 from adversary

𝑋 := Encode(𝑒, 𝑥)
// dummy/random labels:
𝑌̃ ← ({0, 1}𝜆)∗𝑌̃ ← ({0, 1}𝜆)∗
give (𝑋, 𝑌̃ ) to adversary

Input label authenticity: Intuitively, the evaluation

algorithm should detect the presence of erroneous gar-

bled inputs. More formally, the adversary has negligible

probability of winning this game:

receive 𝑓 from adversary

(𝐹, 𝑒, 𝑑) ← Garble(𝑓 )
give 𝐹 to adversary

receive 𝑥 and ®𝜖 from adversary

𝑋 := Encode(𝑒, 𝑥) ⊕ ®𝜖
adversary wins if Eval(𝐹, 𝑋 ) ≠ ⊥ and ®𝜖 ≠ 0∗

Instantiating garbled circuits: The state of the art

schemes for boolean garbling are those of Rosulek &

Roy [RR21] and Zahur, Rosulek, and Evans [ZRE15].

The security definitions we have presented here, for

privacy and output authenticity, are compatible with

standard garbling schemes without modification. Our

requirement for input-label authenticity is non-standard,

and would require slightly modifying a standard scheme

as follows: For every input wire 𝑤 , with labels 𝑊0 and

𝑊1, the garbled circuit must include additional hashes

𝐻 (𝑤,𝑊0), 𝐻 (𝑤,𝑊1). To validate a garbled input, the eval-

uator can hash the given input labels and check for their

presence in the garbled circuit information. When the

hash function is the one used in the garbling scheme,

a standard argument shows that there is no harm to

security by including these additional wire label hashes.

3.2. Setup Functionalities

Our protocol requires two setup functionalities:

Fa-com and Fu-com. Both are homomorphic secret-sharing

functionalities: senders (one or many, if they have con-

sensus) can share a value among the receivers. Re-

ceivers (if they have consensus) can open any linear

combination of shared values. In Fa-com, the results are

authenticated, meaning that receivers will obtain the

correct value (or else abort). In Fu-com, the results are

unauthenticated, meaning that a corrupt receiver can

inject an additive error into the opened value.

Fu-com, Fa-com
on input (store, 𝑘, 𝑣) from all senders:
set 𝑉 [𝑘] := 𝑣
give (store, 𝑘) to all receivers

on input (add-const, 𝑘, 𝑐;𝑘 ′) from all receivers:
set 𝑉 [𝑘 ′] =𝑉 [𝑘] + 𝑐
give (add-const, 𝑘, 𝑐;𝑘 ′) to all receivers

on input (reveal, 𝑘1 + 𝑘2 + · · · ) from all receivers:
𝑣 =𝑉 [𝑘1] +𝑉 [𝑘2] + · · ·
in the Fu-com functionality only:in the Fu-com functionality only:

if any receiver is corrupt, await 𝜖 from simulator

𝑣 := 𝑣 + 𝜖
give (reveal, 𝑘, 𝑣) to all receivers

Instantiating the setup functionalities. Our protocol

requires protocols for such functionalities, secure in the

corruption settings we consider. Namely, they should

be secure against a dishonest majority of senders, or
a dishonest majority of receivers.

One potential instantiation of Fu-com is through sim-

ple additive secret sharing. The senders initially choose a

common seed 𝑠 , known only to them. To implement the

(store, 𝑘, 𝑣) command, they generate an additive secret

sharing of 𝑣 , with randomness derived pseudorandomly

from 𝑠 . In this way, they compute exactly the same

individual shares. Each sender distribute shares to the

corresponding receivers, who then ensure that they have

received identical shares from all senders. The additive

homomorphic feature of additive sharing is standard.

The receivers open a shared value by first committing

to their shares and then opening. There is no guarantee

that corrupt receivers commit to their correct shares, but

by using a round of commitments, the effect of incorrect

shares is that of adding a known error 𝜖 to the opened

value.



Fa-com can be instantiated with authenticated secret

shares, using either the BDOZ method [BDOZ11] or the

SPDZ method [DPSZ12]. The senders act as the dealer

in these secret sharing schemes, and values are opened

using the secure opening protocols of these schemes.

We require the sharing to be additively homomorphic

with respect to some group. Our protocol uses Fu-com for

wire labels, so the group can be strings of length 𝜆 with

respect to the XOR operation. We need Fa-com to have

homomorphism with respect to a group G (which may

be ({0, 1}𝜆, ⊕) but need not be) which is discussed below.

Public verifiability: The public verifiability of our

main protocol rests on the public verifiability of the

Fa-com functionality. That is, the commitments should

be binding from the perspective of an external judge,

even if all receivers are corrupt.

BDOZ and SPDZ authenticated sharings are not

binding in this way; if all receivers are corrupt, then

they can easily falsify the transcript of an opening. To

achieve public verifiability, then, the senders should com-

mit to the value using a Pedersen commitment (which

it publishes, e.g., in the ledger), then additively share

the opening/decommitment value among the receivers.

Then, cheating among receivers is irrelevant because

binding is inherited directly from the Pedersen com-

mitment, and not from the corruption threshold. We

are not aware of any Pedersen-like commitment sup-

porting XOR homomorphism, but only homomorphism

on (Z𝑛,+). We also note that Pedersen commitments

operate homomorphically on both the committed value

and the decommitment values, so evaluators are able to

homomorphically compute the necessary sharings of the

decommitment values.

4 Our Main Protocol

4.1. Opcodes & Transactions

We begin by formalizing our notation for transac-

tions. Let (G,+) be a group. An opcode is a determin-

istic function 𝑓 : G𝑚 → G𝑚 . (The purpose of requiring

a group operation over these values will be explained

later.) For ease of explanation, we assume all opcodes

have the same number of inputs/outputs, but this is not

a fundamental limitation of our protocol techniques.

Intuitively, a transaction is a directed acyclic graph

(or simply a circuit) of opcodes, whose inputs are either

public values or system key values. Formally, a transac-

tion 𝑇 consists of the following:

• 𝑇 .ops is an ordered sequence of opcode ids.

• 𝑇 .in(𝑖, 𝑗) indicates where input 𝑗 of opcode 𝑖 comes

from. There are three possibilities:

– 𝑇 .in(𝑖, 𝑗) = (key, 𝑃) means the input is 𝐾 [𝑃]
– 𝑇 .in(𝑖, 𝑗) = (const, 𝑣) means the input is public

constant 𝑣

– 𝑇 .in(𝑖, 𝑗) = (conn, 𝑖′, 𝑗 ′) means the input comes

from output 𝑗 ′ of opcode 𝑖′.

• 𝑇 .conn is the set of all (𝑖′, 𝑗 ′, 𝑖, 𝑗) such that

𝑇 .in(𝑖, 𝑗) = (conn, 𝑖′, 𝑗 ′). In other words, output 𝑗 ′

of op 𝑖′ becomes input 𝑗 of op 𝑖 .

• 𝑇 .out is a list of (𝑖, 𝑗) pairs, indicating that output

𝑗 of op 𝑖 is a transaction-level output.

Such a transaction must satisfy the following:

• Topological ordering: if 𝑇 .in(𝑖, 𝑗) = (𝑖′, 𝑗 ′) then 𝑖′

comes before 𝑖 in 𝑇 .ops list.

• No fan-out: for all (𝑖′, 𝑗 ′), there is at most one tuple

of the form (𝑖′, 𝑗 ′, ·, ·) in 𝑇 .conn.
Running a transaction, with respect to a mapping 𝑓 of

ids ↦→ functions, and a mapping 𝐾 of key-names ↦→ keys,

refers to the following process:

run(𝑇, 𝑓 , 𝐾):
for each 𝑖 ∈ 𝑇 .ops:
for each input 𝑗 :

if 𝑇 .in(𝑖, 𝑗) = (key, 𝑃): 𝑥 [𝑖, 𝑗] := 𝐾 [𝑃]
if 𝑇 .in(𝑖, 𝑗) = (const, 𝑣): 𝑥 [𝑖, 𝑗] := 𝑣
if 𝑇 .in(𝑖, 𝑗) = (conn, 𝑖′, 𝑗 ′): 𝑥 [𝑖, 𝑗] := 𝑦 [𝑖′, 𝑗 ′]

𝑦 [𝑖, ·] = 𝑓 [𝑖]
(
𝑥 [𝑖, ·]

)
for each (𝑖, 𝑗) ∈ 𝑇 .out:
𝑜𝑢𝑡 = 𝑜𝑢𝑡 ∥𝑦 [𝑖, 𝑗]

return 𝑜𝑢𝑡

4.2. The Ideal Functionality

The ideal FgcVM functionality is given below:

FgcVM
on command (keygen, 𝑃) from all garblers:

// 𝑃 may be ⊥, indicating network key
if 𝐾 [𝑃] undefined: 𝐾 [𝑃] ← {0, 1}𝜆
give (keygen, 𝐾 [𝑃]) to party 𝑃

on command (new-op, 𝑓 ) from all garblers:

give (new-op, 𝑓 ) to the simulator; await response 𝑖

𝑓 [𝑖] := 𝑓
give (new-op, 𝑓 , 𝑖) to all evaluators

on command (run,𝑇 ) from all evaluators:

for all 𝑖 ∈ 𝑇 .ops: assert 𝑓 [𝑖] defined
𝑜𝑢𝑡 := run(𝑇, 𝑓 , 𝐾)
for all 𝑖 ∈ 𝑇 .ops: delete 𝑓 [𝑖] // (single use)
give (run,𝑇 , 𝑜𝑢𝑡) to all evaluators

4.3. Protocol Intuition & Concepts

For an opcode 𝑓 : G𝑚 → G𝑚 and vectors 𝛼, 𝛽 ∈ G𝑚 ,
we define its masked version 𝑓𝛼,𝛽 as:

𝑓𝛼,𝛽 (𝑥, 𝛿) = 𝑓 (𝑥 − 𝛼) + 𝛽 + 𝛿.

Note that 𝛼, 𝛽, 𝑥, 𝛿 are all vectors in G𝑚 . The class of all

maskings of 𝑓 is denoted:

mask(𝑓 ) = {𝑓𝛼,𝛽 | 𝛼, 𝛽 ∈ G𝑚}

Our protocol evaluates opcodes in a masked fashion, as

follows:

• Garblers will generate a collection of (garbled) op-

codes, with secret 𝛼, 𝛽 masks hard-coded in, and

hidden by the garbling.

• During run-time, if the plaintext input to opcode 𝑓

is 𝑥 , then the masked value 𝑥 = 𝑥 + 𝛼 is assumed

to be public to the evaluators.



• The purpose of 𝛿 inputs to allow a masked opcode

circuit to mask its output using the input mask of

a downstream opcode. In other words, the output

of one opcode circuit is masked in exactly the

manner that the next opcode circuit expects. Note

that the masks for each garbled circuit are chosen

independently, before the transaction’s connection

topology is known. This is why 𝛿 must be an input

to the circuit.

Garbling masked opcode circuits: In the simplest

case, we take G = ({0, 1}𝜆, ⊕). Standard boolean garbled

circuits support masking in this G, essentially “for free.”

In the standard point-and-permute paradigm, 𝛼 and

𝛽 can be the garbler’s secret “permute bits” on the

input/output wires. Then a garbled encoding of input

𝑥 is already designed to reveal 𝛼 ⊕ 𝑥 .
But our protocol requires an Fa-com functionality that

is homomorphic with respect to the same group G as the

garbling masks. Not all instantiations of Fa-com support

XOR homomorphism — specifically, instantiations using

Pedersen commitments support only G = (Z𝑛,+). In
these cases, the garbled circuit must “manually” encode

the masking/unmasking operations with extra circuitry.

Common notation: We use the following conventions:

• 𝑖 = id of opcode instance

• 𝑗 = logical input/output of an opcode (a group

element)
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• 𝑘 = particular bit in the binary encoding of a group

element

So, (𝑖, 𝑗, 𝑘) may refer to the 𝑘th bit in the encoding of

the 𝑗th input to the 𝑖th opcode instance.

Garbling notation: We garble masked opcodes of the

form 𝑓𝛼,𝛽 , which have two input vectors: 𝑥 and 𝛿 . We

partition the garbled input information 𝑒 (and garbled

input labels 𝑋 ) into two parts: 𝑒𝑥 and 𝑒𝛿 (resp., 𝑋𝑥 and

𝑋𝛿 ).

Thus, 𝑒𝑥 [ 𝑗, 𝑘, 𝑏] denotes the wire label representing

that the 𝑘th bit of 𝑥 [ 𝑗] is 𝑏.
Overview of soldering: Suppose for simplicity each

opcode has a single input and single output, and that a

certain transaction requires the output of opcode 𝑓 to

become the input of opcode 𝑓 ′. The garblers will have

already produced a garbled (masked) opcode circuits 𝑓𝛼,𝛽
and 𝑓 ′

𝛼 ′,𝛽 ′ . They will also have distributed homomorphic

commitments to the 𝛼, 𝛽, 𝛼 ′, 𝛽 ′ masks.

During evaluation time, the evaluators will induc-

tively obtain the masked input 𝑥 = 𝑥 + 𝛼 for opcode 𝑓 .

To connect the 𝑓 and 𝑓 ′ circuits, they combine homo-

morphic commitments of 𝛼 ′ and 𝛽 to reveal the value

𝛿 = 𝛼 ′ − 𝛽 . Now the plaintext values 𝑥 and 𝛿 will be

the inputs to the masked 𝑓𝛼,𝛽 circuit. As a result, this

masked circuit will compute:

𝑓𝛼,𝛽 (𝑥, 𝛿) = 𝑓 (𝑥 − 𝛼) + 𝛽 + 𝛿

= 𝑓

(
(𝑥 + 𝛼) − 𝛼

)
+ 𝛽 + (𝛼 ′ − 𝛽) = 𝑓 (𝑥) + 𝛼 ′

In this way, the output of this masked circuit is the

opcode output 𝑓 (𝑥), masked with the correct mask (𝛼 ′)
for the next circuit.

4. 𝑗 is relevant for the non-binary case, or if we have multiple output

one for different circuit.

The benefit of having the output of one circuit exactly
equal the input of the next circuit is that the garbled

encodings of these values can be easily translated. In

particular, suppose 𝑑 represents all output labels of the

𝑓𝛼,𝛽 circuit, and 𝑒′ represents all input labels (for the

“𝑥-input” but not “𝛿-input”) of the 𝑓 ′
𝛼 ′,𝛽 ′ circuit. Then

the evaluators can homomorphically reveal (essentially)

𝑑 ⊕ 𝑒′. Think of this as a 𝑛 × 2 matrix of one-time pad

ciphertexts, where each output label of 𝑓𝛼,𝛽 is used to

mask the matching input label of 𝑓 ′
𝛼 ′,𝛽 ′ . (Our strong

output authenticity property ensures that it is safe to

use output labels as one-time pads in this way.) So

after evaluating 𝑓𝛼,𝛽 , the evaluators can (for each wire)

decrypt the corresponding one-time pad ciphertext to

learn (non-interactively) the garbled input for 𝑓 ′
𝛼 ′,𝛽 ′ .

4.4. Protocol Description

Our protocol requires the following:

• an instance of Fa-com over the group (G,+), which
is the same group as for masking opcodes.

• an instance of Fu-com, which can be over the group

({0, 1}𝜆, ⊕)
The formal description is given in Figure 3.

5 Security Analysis

Theorem 1. If (Garble, Eval) is a garbling scheme sat-
isfying the properties listed in Section 3.1, then our
protocol UC-securely realizes FgcVM in the presence of
an adversary who corrupts all but one garbler, or all
but one evaluator.
Additionally, correctness (public verifiability) is guar-
anteed even against an adversary who corrupts all but
one garbler and any number of evaluators, as long as
Fa-com is binding in the presence of one honest sender.

We defer full proofs to the full version, and provide

only high-level sketches in this version. We divide the

analysis into three cases, depending on the corruption

scenario.

Corrupt garblers only:
Note that Fa-com and Fu-com require consensus from

all garblers for store commands, and evaluators (who

are honest) also require consensus from garblers about

the garbled circuits 𝐹 . Thus, since we assume at least

one honest garbler, any corrupt garbler who does not

strictly follow the protocol will cause it to abort. This is

straight-forward to simulate.

Corrupt evaluators only: We assume that at least one

evaluator is honest. Then since Fa-com and Fu-com require

consensus from all evaluators for reveal commands,

the adversary cannot reveal any result besides what the

protocol prescribes. However, in the case of Fu-com, the
adversary can contribute an additive error to the value

that is opened. In our protocol, (we show that) honest

parties abort if the adversary uses any nonzero error.

Simulating this effect is relatively straightforward.

Thus the main role of the simulator is to simulate

the garbled circuits, garbled inputs, and the outputs of



initially:

garblers perform coin tossing to obtain secret 𝑔𝑘

evaluators perform coin tossing to obtain secret 𝑒𝑘

on command (keygen, 𝑃):
// 𝑃 may be ⊥, indicating network key
every garbler does:

𝑅 := PRF(𝑔𝑘, (prekey, 𝑃))
send (store, (pre-key, 𝑃), 𝑅) to Fa-com
(if 𝑃 ≠ ⊥) send 𝑅 to 𝑃 through a secure channel

every evaluator does:

await (store, (pre-key, 𝑃)) from Fa-com
𝑅′ := PRF(𝑒𝑘, 𝑃)
send (add-const, (pre-key, 𝑃), 𝑅′; (key, 𝑃))
(if 𝑃 ≠ ⊥) send 𝑅′ to 𝑃 through a secure channel

party 𝑃 does:

ensure identical 𝑅 received from every garbler

ensure identical 𝑅′ received from every evaluator

store 𝑅 + 𝑅′ as gcEVM key

on command (new-op, 𝑓 ):
every garbler does:

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 := 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1
𝛼, 𝛽 := PRF(𝑔𝑘, (alpha-beta, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ))
𝑟 := PRF(𝑔𝑘, (garble-seed, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ))
(𝐹, 𝑒, 𝑑) := Garble(𝑓𝛼,𝛽 ; 𝑟 )
𝑖 := CRHF(𝐹 )

for each logical input 𝑗 :

send (store, (alpha, 𝑖, 𝑗), 𝛼 [ 𝑗]) to Fa-com
send (store, (beta, 𝑖, 𝑗), 𝛽 [ 𝑗]) to Fa-com
for each encoding bit 𝑘 and 𝑏 ∈ {0, 1}:
send the following to Fu-com:
(store, (in-label-x, 𝑖, 𝑗, 𝑘, 𝑏), 𝑒𝑥 [ 𝑗, 𝑘, 𝑏])
(store, (in-label-delta, 𝑖, 𝑗, 𝑘, 𝑏), 𝑒𝛿 [ 𝑗, 𝑘, 𝑏])
(store, (out-label, 𝑖, 𝑗, 𝑘, 𝑏), 𝑑 [ 𝑗, 𝑘, 𝑏])

broadcast (new-op, 𝑓 , 𝑖, 𝐹 ) to all evaluators

every evaluator does:

abort if any of the following are violated:

all (store, · · · ) outputs received from Fa-com/Fu-com,
as expected

identical (new-op, 𝑓 , 𝑖, 𝐹 ) received from all garblers

𝑖 = CRHF(𝐹 )
store 𝐹 [𝑖] := 𝐹

on command (run,𝑇 ):
every evaluator does:

// compute 𝛿 inputs:
for every (𝑖, 𝑗, 𝑖′, 𝑗 ′) ∈ 𝑇 .conn:
send (reveal, (alpha, 𝑖′, 𝑗 ′) − (beta, 𝑖, 𝑗)) to Fa-com
await response (reveal, · · · , 𝛿 [𝑖, 𝑗])

for every (𝑖, 𝑗) ∈ 𝑇 .out:
send (reveal,−(beta, 𝑖, 𝑗)) to Fa-com
await response (reveal, · · · , 𝛿 [𝑖, 𝑗])

// obtain garbled 𝛿 inputs:
for every (𝑖, 𝑗) and every encoding bit 𝑘 :

write 𝛿 [𝑖, 𝑗] in binary, so that 𝛿𝑘 is its 𝑘th bit

send (reveal, (in-label-delta, 𝑖, 𝑗, 𝑘, 𝛿𝑘 )) to Fu-com
await response (reveal, · · · , 𝑋𝛿 [𝑖, 𝑗, 𝑘])

// soldering
for every (𝑖, 𝑗, 𝑖′, 𝑗 ′) ∈ 𝑇 .conn and 𝑏 ∈ {0, 1}:
send (reveal, (out-label, 𝑖, 𝑗, 𝑘, 𝑏) + (in-label-x, 𝑖′, 𝑗 ′, 𝑘, 𝑏))

to Fa-com
await response (reveal, · · · ,Δ[𝑖, 𝑗, 𝑖′, 𝑗 ′, 𝑘, 𝑏])

// obtain (masked) transaction inputs:
for every (𝑖, 𝑗) such that 𝑇 .in(𝑖, 𝑗) ≠ (conn, · · · ):
if 𝑇 .in(𝑖, 𝑗) = (const, 𝑣):
send (reveal, (alpha, 𝑖, 𝑗) + 𝑣) to Fa-com
await response (reveal, · · · , 𝑥 [𝑖, 𝑗])

else 𝑇 .in(𝑖, 𝑗) = (key, 𝑃):
send (reveal, (alpha, 𝑖, 𝑗) + (key, 𝑃)) to Fa-com
await response (reveal, · · · , 𝑥 [𝑖, 𝑗])

write 𝑥 [𝑖, 𝑗] in binary, so that its 𝑘th bit is 𝑥 [𝑖, 𝑗]𝑘
for every encoding bit 𝑘 :

send (reveal, (in-label-x, 𝑖, 𝑗, 𝑘, 𝑥 [𝑖, 𝑗]𝑘 )) to Fu-com
await response (reveal, · · · , 𝑋𝑥 [𝑖, 𝑗, 𝑘])

// evaluation:
for every 𝑖 ∈ 𝑇 .ops:
for each input 𝑗 and encoding bit 𝑘 :

if 𝑇 .in(𝑖, 𝑗) = (conn, 𝑖′, 𝑗 ′):
// masked output 𝑦 [𝑖′, 𝑗 ′] defined previously
𝑥 [𝑖, 𝑗] := 𝑦 [𝑖′, 𝑗 ′]
𝑋𝑥 [𝑖, 𝑗, 𝑘] := 𝑌 [𝑖′, 𝑗 ′, 𝑘] ⊕ Δ

[
𝑖′, 𝑗 ′, 𝑖, 𝑗, 𝑘, 𝑥 [𝑖, 𝑗]𝑘

]
else: (𝑋𝑥 [𝑖, 𝑗, 𝑘] already defined previously)

𝑌 [𝑖, ·] := Eval(𝐹 [𝑖], 𝑋𝑥 [𝑖, ·] ∥𝑋𝛿 [𝑖, ·]) // abort if this step returns ⊥
𝑦 [𝑖, ·] := Decode(𝑌 [𝑖, ·])
delete 𝐹 [𝑖]

// output:
for every (𝑖, 𝑗) ∈ 𝑇 .out:
𝑜𝑢𝑡 = 𝑜𝑢𝑡 ∥𝑦 [𝑖, 𝑗]

output (run,𝑇 , 𝑜𝑢𝑡)
Figure 3. Formal protocol description.



the Fa-com and Fu-com functionalities. We describe the

simulator below:

simulator

upon receiving (new-op, 𝑓 ) from FgcVM:
simulate expected (store, · · · ) messages from Fu-com/Fa-com,

as prescribed in protocol description

generate simulated garbled circuit 𝐹 (for circuit class mask(𝑓 ))
reply to FgcVM with 𝑖 = CRHF(𝐹 )
store 𝐹 [𝑖] := 𝐹
simulate broadcast (new-op, 𝑓 , 𝑖, 𝐹 ) from all garblers

command (run,𝑇 ):
for every (𝑖, 𝑗):
𝛿 [𝑖, 𝑗] ← G
sample 𝑥 [𝑖, 𝑗], 𝑦 [𝑖, 𝑗] ← G, subject to

𝑥 [𝑖, 𝑗] = 𝑦 [𝑖′, 𝑗 ′] for all (𝑖′, 𝑗 ′, 𝑖, 𝑗) ∈ 𝑇 .conn
for every 𝑖 ∈ 𝑇 .ops:

run the second phase of GC simulator for 𝐹 [𝑖],
with plaintext input (𝑥 [𝑖, ·], 𝛿 [𝑖, ·]) and output 𝑦 [𝑖, ·],
obtaining (simulated) garbled input 𝑋𝑥 [𝑖, ·] and 𝑋𝛿 [𝑖, ·]

𝑌 [𝑖, ·] = Eval(𝐹 [𝑖], 𝑋𝑥 [𝑖, ·] ∥𝑋𝛿 [𝑖, ·])
for every (𝑖, 𝑗, 𝑖′, 𝑗 ′) ∈ 𝑇 .conn:
𝑏 := 𝑥 [𝑖′, 𝑗 ′]𝑘
// = 𝑦 [𝑖, 𝑗]𝑘 = the bit that will actually be visible on this wire
Δ[𝑖, 𝑗, 𝑖′, 𝑗 ′, 𝑘, 𝑏] := 𝑌 [𝑖, 𝑗, 𝑘] ⊕ 𝑋𝑥 [𝑖′, 𝑗 ′, 𝑘]
Δ[𝑖, 𝑗, 𝑖′, 𝑗 ′, 𝑘, 1 − 𝑏] ← {0, 1}𝜆

wait for all corrupt evaluators to send the prescribed

reveal commands to Fa-com/Fu-com
simulate Fa-com/Fu-com responses using variable

names defined above, and adding the adversary-provided

error for responses from Fu-com

if nonzero error was added to any 𝑋𝑥 [𝑖, 𝑗, 𝑘], 𝑋𝛿 [𝑖, 𝑗, 𝑘],
or Δ

[
𝑖, 𝑗, 𝑖′, 𝑗 ′, 𝑘,𝑦 [𝑖, 𝑗]𝑘

]
:

simulate that the honest parties aborted

Below we summarize the sequence of hybrids that

establish indistinguishability between the real and ideal

worlds:

• (Real world:) simulation plays the role of all honest

parties and setup functionalities.

• (Hybrid 1 introduces the following change:) If the

adversary provides nonzero error for an Fu-com-
response that is actually used (either an 𝑋𝑥 , 𝑋𝛿

value, or Δ[𝑖, 𝑗, 𝑖′, 𝑗 ′, 𝑘, 𝑏] value for the correct 𝑏),

then honest parties abort. This hybrid differs from

the previous only in the bad event that a nonzero

error would not have caused honest parties to abort.

Using a reduction to the input authenticity prop-

erty, this bad event can be shown to have negligible

probability, and hence the change is indistinguish-

able.

• (Hybrid 2 introduces the following change:) Sim-

ulate Δ[𝑖, 𝑗, 𝑖′, 𝑗 ′, 𝑘, 1 − 𝑏] values (where 𝑏 is the

“correct” value), as output by Fu-com in the sol-

dering phase, as random strings. This change is

indistinguishable by a straight-forward reduction to

the real-or-random output authenticity property of

garbling. Appealing to that security game, we are

able to replace correct complementary output labels

𝑌 [𝑖, 𝑗, 𝑘, 1 − 𝑏] with random strings. But each such

output label is used only in the computation of a

single Δ value (because of our fan-out restriction),

acting as a OTP.

• (Hybrid 3 introduces the following change:) Replace

real garbled circuit 𝐹 [𝑖] and garbled input 𝑋 [𝑖, ·]
with simulated ones. The garbled circuit is produced

during new-op, and the garbled input produced

after the simulator knows the input/output of each

opcode circuit (the public, masked values). Thus we

have a straight-forward reduction to the adaptive

security of the garbling scheme. The simulation

does not need the output labels 𝑑 [·], only the

visible garbled output, which can be computed by

evaluating the garbled circuit. Note that after this

change the simulator simulates the garbled circuit

without using its 𝛼, 𝛽 parameters.

• Now the 𝛼, 𝛽 values are used only to compute the

reveal-output values from Fu-com/Fa-com (namely,

𝛿 values and 𝑥 values). Because of the fan-out re-

striction on the transaction, a uniform distribution

over 𝛼 ’s and 𝛽 ′𝑠 induces a uniform distribution over

these Fu-com/Fa-com outputs. Thus, this hybrid is

identical to the ideal world with the simulator we

have defined above.

Corrupt garblers and evaluators (public verifiabil-
ity): In this setting we assume the presence of at least

one honest garbler, although all evaluators may be cor-

rupt. If the adversary corrupts a mixture of garblers and

evaluators, then privacy is compromised. However, we

claim that the protocol achieves guaranteed correctness

/ public verifiability.

The proof boils down to the following essential

claims:

1) The protocol requires total consensus from the gar-

blers about the garbled circuits and the homomor-

phic commitments. So if at least one garbler is

honest, then all garbled circuits and homomorphic

commitments are correct.

2) If Fa-com is binding even when all receivers are

corrupt, then all of the Fa-com openings must be

correct with respect to the underlying 𝛼, 𝛽 masks

and the network keys. In particular, the masked

inputs and the 𝛿 values are correct and consistent

with the 𝛼, 𝛽 masks hard-coded into the opcode

circuits.

3) Homomorphic openings in Fu-com need not be cor-

rect in this case. However, if these are not opened

correctly, then the input authenticity property of

the garbled circuit (which is correct) ensures that

garbled evaluation will abort with overwhelming

probability.

Thus, if evaluation does not abort, we may conclude

that the correctly generated garbled circuits are being

evaluated on the correct input labels that encode the

correct transaction inputs.

6 Geth Integration & PoC Evalua-
tion.

Integration with Go-Ethereum. We forked the Go-

Ethereum repository [Eth25] and extended it in two

aspects:

• Consensus-Execution Separation. As explained

above, we separate the two sub-networks. The



consensus sub-network can be permissionless and

follow the Ethereum 2.0 Gasper PoS protocol

(see [BG17]), however, in our PoC we used a

version of Ethereum PoA, with some modification

to facilitate the consensus-execution separation.

The execution sub-network is permissioned

(PoA) and benefits from synchronous decryption

mechanism (in contrast to the new fhEVM version

that transitioned to asynchronous decryption
5
).

Synchronous decryption is important for smart

contract developers, as they can utilize the same

code-flow as they are used to from the usual

(non privacy preserving) contract coding. The

async decryption architecture forces developers

using ‘callbacks’ for getting a decryption results,

which complicates the code and makes it less

understandable. We utilize the ’difficulty’ parameter

in order to work with two block types: canonical

and non-canonical (see Figure 1) and yet have

minimal code changes. The difficulty parameter

is used in PoW and PoA protocols to determine

the chain’s head according to the different chains

accumulated weight. We fix different difficulty

values 𝑋 and 𝑌 to non-canonical (NC) and

canonical (CA) blocks, respectively, such that

𝑋 < 𝑌 . This way, the next canonical block surely

override its predecessor non-canonical one. The

following is an example of the first few blocks of

the chain:

Block #0 CA. Genesis

Block #1 NC(parent=#0, difficulty=X)

Block #1 CA (parent=#0, difficulty=Y)

Block #2 NC(parent=#1, difficulty=X)

Block #2 CA (parent=#1, difficulty=Y)

Block #3 NC(parent=#2, difficulty=X)

Block #3 CA (parent=#2, difficulty=Y)

. . .

• Instruction Set Extension. We use Ethereum’s stan-

dard interface to extend the EVM with more func-

tionality using precompiled contracts. In our case,

we extend it with functionality that triggers secure

computation. A solidity library MpcCore.sol facil-

itates a convenient way to trigger secure compu-

tation related functionalities. That library defines

the necessary types (e.g., itUint64, ctUint64,
gtUint64 for 64-bit integer input-text, cipher-text

and garbled-text; see Section 2.1 for more explana-

tion) and the functionalities that can work on these

types.
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The MPC instantiation. The MPC version evaluated

in this PoC includes a protection from malicious ad-

versaries, but does not provide public auditability. In

addition, current soldering happens online rather than

offline (see Section 2.3), meaning that the parties spend

two communication rounds before each GC evaluation.

This PoC consists of two replicated garblers (producing

exactly the same GCs) so if one malicious garbler pub-

lishes incorrect GCs (which are different than the ones

5. See https://www.zama.ai/post/fhevm-v0-4

6. See https://anonymous.4open.science/r/gcvm-DDC5/MpcCore.sol

for a full list of supported types and functionalities.

published by the honest garbler) the protocol halts until

the attacker is eliminated. In addition, it consists of two

evaluators. The concrete guarantees in this model are

as follows: (i) corruption of at most one party (either

garbler or evaluator) leaves both correctness and privacy

intact; (i) corruption of both evaluators or both garblers

breaks both correctness and privacy; and (iii) corrup-

tion of an evaluator and a garbler breaks privacy but

not correctness. The garbling scheme used is the Half-

Gates [ZRE15], and the authenticated secret sharing is

instantiated with IT-MACs originated from the garblers.

That is, a share 𝑝1 of a permutation bit 𝑝 held by the

first evaluator is associated with a MAC 𝑀 [𝑝0] ∈ {0, 1}𝜆 .
To reveal 𝑝1 to the second evaluator, the first evaluator

sends 𝑝1 and 𝑀 [𝑝1], upon which the second evaluator

verifies that 𝑀 [𝑝1] = 𝑃 [𝑝1] ⊕ 𝑝1 · 𝐾 , where 𝐾 is the

global secret MAC key held by the second evaluator,

𝑀 [𝑝1] is given to the first evaluator and 𝑃 [𝑝1] is a

secret random pad given to the second evaluator. The

garblers are responsible for distributing these values

to the evaluators. It is easy to see that IT-MACs are

XOR-homomorphic, which enables authentication XOR

of secret shared bits. See more details on IT-MAC in

Section C.

We note that public auditability, offline soldering,

and increasing the number of parties are ongoing work

on which we plan to report in the full paper.

gcVM configuration. The main advantage of the gcVM

is expressed by the fact that the evaluators can store

many GCs in a local inventory, so they can get ready for

a burst event that requires a pick consumption. Specif-

ically, the evaluators are configured with a capacity

argument for the circuit of each opcode, which means

that they keep accepting GCs from the garbler until

that capacity is filled. For instance, given 1000 Transfer
GCs, 3000 Onboard GCs and 2000 Offboard GCs in the

evaluators’ inventory, they can still process 1000 confi-

dential ERC20 (CERC20) transfers even in an extreme

cases when garblers are disconnected (See illustration

in Figure 7). The gcVM version on which we report is

configured with:

• Block interval of 5s, meaning that the sequencer

sub-network publishes the next non-canonical block

5 seconds after the last canonical block is sealed.

• Capacities for Transfer, Onboard and Offboard is

set to 2000, 6000, and 4000, respectively.

• Block gas limit is set to 310,000,000. This means that

up to 1000 CERC20 can fit in a single block.

To increase ctps one can reduce the block interval time,

increase the capacities and increase the block gas limit.

Deployment and benchmarks. The MPC nodes are

deployed over a 5Gb network on AWS (all in North

Virginia), on r5n.2xlarge on-demand instances. Metrics

of interest to evaluated are:

• The gcVM throughput, which is measured by the

number of CERC20 transfers per second, or ctps.
• The dollar cost burden on MPC nodes per CERC20

transfer.

We measure CERC20 throughput using the following

setup:

https://www.zama.ai/post/fhevm-v0-4
https://anonymous.4open.science/r/gcvm-DDC5/MpcCore.sol


Figure 4. Throughput test summary. Note that avg. ctps drops after inventory is drained, but remains stable afterwards, implying that increasing

the inventory can keep a high ctps for a longer period. Each gray bar represents a block; its height indicates the calculated ctps. The red line on

top of a gray bar indicates the time to execute that block.

Figure 5. CERC20 time consumption breakdown on a single threaded evaluator. The left and right white margins represent Geth’s tx preparation

and finalization, and in between there are 6 segments: 3 for onboarding the balanceA, balanceB, amount ciphertexts (transforming them into

garbledtext), then the Transfer operation, followed by 2 Offboard operation transforming the updated balanceA, balanceB back into ciphertexts.
Each segment begins with a precompiled contract call preparation (light gray), followed by the online soldering rounds (dark gray), finally followed

by the actual GC evaluation (black).

• We ran 10 EOA accounts in parallel. Each account

was programmed to send 10,000 transfers, resulting

in a burst of 100,000 transactions processed in total.

• All accounts sent transactions to a pre-deployed

cERC20 contract.
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• The accounts were fully onboarded prior to the start

of the test, so the users onboarding process and

its associated transactions were excluded from the

scope.

The results are summarized in Figure 4 and show the

following: over 1930 seconds (32 minutes) and 102 blocks

we get an average of 56.17 ctps, with minimum of 31 and

maximum of 82.5 ctps.

A typical CERC20 time consumption breakdown of

handling a CERC20 transfer is depicted in Figure 5. The

top chart is the actual transaction breakdown in our

implementation that currently utilizes online soldering,

whereas the bottom chart demonstrates the anticipated

improvement when optimizing with offline soldering per

transaction. This offline soldering can be further pushed

to reduce overall time if performed once for many trans-

actions (and potentially the entire block). The core GC

evaluation time takes only 2.07ms on a single threaded

evaluator, which, given a client more optimized than

Geth (e.g., Reth
8
), can take us to about 500 ctps, before

parallelization.

The dollar cost per CERC20 transfer per evalua-

tor is calculated based on (i) an hourly rate of the

instances used ($0.59); (ii) an average throughput of

7. The contract can be found here https://anonymous.4open.science/

r/gcvm-DDC5/PrivateERC20Contract.sol

8. See https://github.com/paradigmxyz/reth

56 ctps (before any optimization); and (iii) the cross-

region data transfer costs $0.0050/GB, considering each

CERC20 incurs data transfer of 1MB (dominated by

5 garbled circuits for decryption/encryption, each of

200KB). We get that the cost per transfer is $0.000008 =
0.59/3600/50 + 0.0050/1024, or 0.0008 cents.
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Appendix A.
Separating sequencing and execution
in privacy preserving blockchains

Privacy-preserving blockchains bring an innovative

edge by enabling the processing of encrypted data while

selectively decrypting ciphertexts when dictated by the

transaction logic. This includes the ability to re-encrypt

data toward a user-owned key, ensuring that only the

intended recipient can access sensitive information.

However, this powerful capability introduces a criti-

cal challenge to validators. In blockchains like Ethereum,

validators maintain the integrity of the network by pro-

ducing canonical blocks—-those that accurately record

state changes from one block to the next. Without the

ability to decrypt or re-encrypt, validators in a privacy-

preserving blockchain lose this essential function.

On the flip side, granting validators (collectively) de-

cryption powers introduces a significant risk of privacy

leakage. Validators could irreversibly decrypt sensitive

transaction data before it is confirmed as part of a fi-

nalized block. This could expose confidential information

from transactions that ultimately never make it into the

canonical chain, compromising the privacy guarantees

that the blockchain aims to uphold.

To address this, the gcVM introduces an innovative

safeguard: non-canonical blocks must achieve finality

before they are handed over to the execution sub-

network. Only at this stage does decryption become

permissible, ensuring that sensitive data is accessed only

when its integrity and inclusion in the blockchain are

fully confirmed.

This approach strikes a delicate balance between

preserving user privacy and maintaining the network’s

integrity, setting a new standard for privacy-focused

blockchain solutions.

Appendix B.
Illustration of soldering

In Figure 6 we present the basic functionality of a

token transfer in the confidential ERC20 standard. The

functionality is given the sender’s and receiver’s balances

balance𝐴 and balance𝐵 as well as the amount to be

transferred from 𝐴 to 𝐵. The functionality first verifies

that balance𝐴 ⩾ amount, and if successful, it transfers

the amount, by decreasing balance𝐴 and increasing

balance𝐵 by amount.

Figure 6. The Confidential ERC20 transfer functionality.

When done in secure computation, we do not wish to

leak to everyone whether balance𝐴 ⩾ amount, therefore,
both paths are executed, and the balances are updated

according to the comparison result, using the MUX oper-

ation.

When executed in the gcVM, the evaluators hold

garbled circuits for operations GTE, ADD, SUB and MUX,
and they wish to pass values from the output of one

circuit to the next; see Figure 7. In the online soldering

technique, the evaluator conduct the soldering protocol

between execution of every two circuits, whereas in the

offline soldering technique they conduct the soldering

protocol for all circuits at once, before evaluation begins,

and then evaluate all circuits as if they were one big

circuit.

Figure 7. Confidential ERC20 transfer via soldering. CERC20 incurs

three Onboard operations, to decrypt ciphertexts balanceA, amount,
balanceB, one Transfer operation that performs the calculation insider

the green boxes, and two Offboard operations to encrypt the updated

balanceA, balanceB.

https://github.com/zama-ai/fhevm
https://github.com/zama-ai/fhevm


Appendix C.
Bit Authentication via Information
theoretic MAC

Consider a scenario in which a dealer D gives a bit

𝑏 to a receiver R (‘sending phase’), who later wants

to prove to a verifier V that 𝑏 is indeed the bit sent

from D (‘validating phase’). This can be easily solved

by having D sending a digital signature on 𝑏 which can

be transferred to𝑉 at the validation phase. However, this

can be done more efficiently if we allow some interaction

between D and V in the sending phase. Specifically,

we can use an information theoretic MAC (IT-MAC) as

follows:

• Setup: D and V agree on a global random IT-MAC

key 𝐾 .

• Sending phase:

– D picks a random one-time pad 𝑃 [𝑏] and com-

putes 𝑀 [𝑏] = 𝑃 [𝑏] ⊕ 𝑏 · 𝐾 .
– D sends 𝑃 [𝑏] to V and (𝑏,𝑀 [𝑏]) to R.

• Validating phase:

– R sends 𝑀 [𝑏] to V .

– V learns the bit 𝑏 ∈ {0, 1} for which 𝑃 [𝑏] =

𝑀 [𝑏] ⊕ 𝑏 · 𝐾 (i.e., it computes both cases and

checks which one holds). If this is not the case

for neither 𝑏 = 0 nor 𝑏 = 1 then V rejects and

aborts.

Since 𝐾 is unknown to R and a new pad 𝑃 [𝑏] is used
each time a bit should be authenticated, the MAC value

𝑀 [𝑏] does not leak information about 𝐾 . Similarly, 𝑃 [𝑏]
is a random value independent of 𝑏, therefore, 𝑏 remains

secret to V .

IT-MAC is XOR-homomorphic.
• Given pads 𝑃 [𝑏], 𝑃 [𝑐] to V and MACs 𝑀 [𝑏], 𝑀 [𝑐]
to R,V can receive and validate the authenticity of

𝑑 = 𝑏 ⊕ 𝑐 without learning 𝑏 or 𝑐 individually. This

can be done by having R send 𝑀 [𝑑] =𝑀 [𝑏] ⊕𝑀 [𝑐]
toV , who checks if 𝑃 [𝑏]⊕𝑃 [𝑐] =𝑀 [𝑑]⊕𝐾 for some

𝑑 ∈ {0, 1}.
• Given an authenticated bit 𝑏 (i.e., R has (𝑏,𝑀 [𝑏])
and V has 𝑃 [𝑏]), it is possible to obtain the au-

thenticated bit 𝑐 where 𝑐 = 𝑏 ⊕ a for some public

bit a ∈ {0, 1} without interaction:
– If a = 0, then 𝑐 = 𝑏 and so everything remains

the same, i.e., authentication of 𝑐 is equal the

authentication of 𝑏.

– If a = 1, then 𝑐 = 𝑏 ⊕ 1. It is simply done by

having V compute 𝑃 [𝑐] = 𝑃 [𝑏] ⊕ 1 · 𝐾 and R
leave 𝑀 [𝑐] =𝑀 [𝑏]. MAC verification go through

because 𝑃 [𝑐] = 𝑃 [𝑏] ⊕ 𝐾 = 𝑀 [𝑏] ⊕ 𝑏 · 𝐾 ⊕ 𝐾 =

𝑀 [𝑏] ⊕ (𝑏 ⊕ 1) · 𝐾 =𝑀 [𝑏] ⊕ 𝑐 · 𝐾 as required.

In our 2-evaluators protocol. In the context of our

protocol, evaluators 𝐸1 and 𝐸2 are associated with global

MAC keys 𝐾1 and 𝐾2. The dealer is the garbler and each

evaluator plays both as a receiver and a validator.
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